• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 18
  • 15
  • 11
  • 7
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 125
  • 125
  • 125
  • 14
  • 14
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study of suspension polymerisation of Methyl Mathacrylate and Styrene in a batch oscillatory baffled reactor

Zhang, Yanmin January 1998 (has links)
One of the most important issues in suspension polymerisation process is the control of the final particle size distribution (PSD) as this is an indicator for both quality and financial matters. For polymer manufacturers, a narrow PSD is always welcome. The conventional reactors, e. g. stirred tank reactors, generally produce particles of a rather broad PSD. As a result, to explore a new type of polymerisation devices becomes a challenging task. The objectives of this PhD study are to apply a novel mixing apparatus, the oscillatory baffled reactor (OBR), to batch polymerisation of MMA and Styrene (crosslinked) and to characterise all the major aspects of the OBR involved in the pioneering work, with a view to assessing its potential for industrial applications. In order to carry out such investigations, a 1.2 litre batch jacketed OBR system with temperature control and on-line data acquisition units was designed and built. In addition, an off-line image capture system was set up f or droplet studies. From heat transfer study in the OBR, it was found that the temperature profiles across and along the reactor were uniform and a heat transfer correlation was obtained. The oil-water dispersion in the OBR was then investigated for various baffle designs, dispersed phase fractions and the levels of surfactants, enabling the optimal baffle type and parameters to be identified. In order to understand the droplet behaviour in the OBR, the droplet size distribution (DSD) was examined on dispersion uniformity, oscillation time, operational conditions, baffle thickness and the level of surfactant addition. It was found that the DSDs were very uniform within the reactor and the oscillation frequency and amplitude had the same effect on controlling the DSDs. Finally, a series of PMMA and PS tests were successfully conducted in the OBR, indicating that the polymer PSD can be controlled by adjusting both oscillation conditions and the baffle orifice diameter and that the OBR has the potential to produce uniform polymer particles at high oscillation frequencies. A correlation between droplet sizes with no reaction and final polymer particle sizes was established, which can be used to predict the final polymer sizes.
2

Applications and physicochemical characterization of nanomaterials in environmental, health, and safety studies

Elzey, Sherrie Renee 01 May 2010 (has links)
As commercially manufactured nanomaterials become more commonplace, they have the potential to enter ecological and biological environments sometime during their lifecycle of production, distribution, use or disposal. Despite rapid advances in the production and application of nanomaterials, little is known about how nanomaterials may interact with the environment or affect human health. This research investigates an environmental application of nanomaterials and characterizes the physicochemical properties of commonly manufactured nanomaterials in environmental health and safety studies. Characterization of nanomaterials for applications and environmental health and safety studies is essential in order to understand how physicochemical properties correlate with chemical, ecological, or biological response or lack of response. Full characterization includes determining the bulk and surface properties of nanomaterials. Bulk characterization methods examine the shape, size, phase, electronic structure and crystallinity, and surface characterization methods include surface area, arrangement of surface atoms, surface electronic structure, surface composition and functionality. This work investigates the selective catalytic reduction (SCR) of NO2 to N2 and O2 with ammonia on nanocrystalline NaY, Aldrich NaY and nanocrystalline CuY using in situ Fourier transform infrared (FTIR) spectroscopy. It was determined that the kinetics of SCR were 30% faster on nanocrystalline NaY compared to commercial NaY due to an increase in external surface area and external surface reactivity. Copper-cation exchanged nanocrystalline Y resulted in an additional increase in the rate of SCR as well as distinct NO2 and NH3 adsorption sites associated with the copper cation. These superior materials for reducing NOx could contribute to a cleaner environment. This work consists of characterization of commonly manufactured or synthesized nanomaterials and studies of nanomaterials in specific environmental conditions. Bulk and surface characterization techniques were used to examine carbon nanotubes, titanium dioxide nanoparticles, bare silver nanoparticles and polymer-coated silver nanoparticles, and copper nanoparticles. Lithium titanate nanomaterial was collected from a manufacturing facility was also characterized to identify occupational health risks. Particle size distribution measurements and chemical composition data showed the lithium titanate nanomaterial forms larger micrometer agglomerates, while the nanoparticles present were due to incidental processes. A unique approach was applied to study particle size during dissolution of nanoparticles in aqueous and acidic conditions. An electrospray coupled to a scanning mobility particle sizer (ES-SMPS) was used to determine the particle size distribution (PSD) of bare silver nanoparticles in nitric acid and copper nanoparticles in hydrochloric acid. The results show unique, size-dependent dissolution behavior for the nanoparticles relative to their micrometer sized counterparts. This research shows size-dependent properties of nanomaterials can influence how they will be transported and transformed in specific environments, and the behavior of larger sized materials cannot be used to predict nanomaterial behavior. The type of nanomaterial and the media it enters are important factors for determining the fate of the nanomaterial. These studies will be important when considering measures for exposure control and environmental remediation of nanomaterials.
3

Physicochemical properties of protein inclusion bodies /

Wangsa-Wirawan, Norbertus Djajasantosa. January 1999 (has links) (PDF)
Thesis (Ph.D.)--University of Adelaide, Dept. of Chemical Engineering, 2000? / Bibliography: leaves 182-198.
4

Low-rate trickling filter effluent : characterisation and crossflow filtration

Marquet, Richard January 1999 (has links)
The low-rate trickling filter is the most common biological treatment process used in small and medium sized sewage works in the UK. It produces an inconsistent effluent quality, which has traditionally been related to seasonal changes in solids accumulation, grazing activity and sloughing of microbial film. The final effluent solids and, organic matter content is then too high for discharge or reuse. Given the increasingly stringent effluent standards, both in terms of quality and consistency, tertiary treatment is often required. This study was designed to investigate the key parameters affecting the performance of low-rate trickling filters and the characteristics of their effluents in terms of contaminant size, which might influence the efficiency of crossflow filtration as a tertiary treatment for the trickling filter.
5

Influence of Sediment Composition on Apparent Toxicity in a Solid‐phase Test Using Bioluminescent Bacteria

Benton, Michael J., Malott, Michelle L., Knight, Scott S., Cooper, Charles M., Benson, William H. 01 January 1995 (has links)
Clean and spiked sediment formulations of various silt sand and clay sand ratios were tested for toxicity using a bioassay that utilizes bioluminescent bacteria Measured toxicities of clean and copper sulfate–spiked sediments were negatively but nonlinearly related with percent silt and percent clay, but no significant relationship existed between measured toxicity and sediment composition for methyl parathion–spiked formulations Results suggest that solid phase sediment bioassays using bioluminescent bacteria may be useful for testing the toxicities of single contaminants in formulated artificial sediments of known particle size composition, and for repeated samples collected from the same site However, extreme caution must be taken when testing sediments of varying composition or which may be differentially contaminated or contain a suite of contaminants.
6

Characterising South Africa’s major dust sources

Bekiswa, Sisanda Ongeziwe 24 February 2020 (has links)
The study investigates the surface controls of major dust emissions and determines the patial distribution of major dust source in South Africa. This study follows a multi-disciplinary approach where primary and secondary data were used. The main objective of the study is to determine the spatial distribution of South Africa's Major Dust Sources. Meteosat Second Generation (MSG) satellite imagery, land use and land cover maps were used to achieve the first and the second objectives of the study. Primary data involved sampling 30 soil samples in the field in order to achieve the third objective of the study. The crust, soil moisture, soil texture and grain size are all controls of dust emission. This investigation is however focused predominantly on grain size characteristics. GIS methods were also used to determine soil type from the African soil map. Soil samples in both provinces were then collected to assess the Particle Size Distribution (PSD) of the soils. The particle size was determined based on a sieve analysis for grain sizes that were greater than 2mm and laser diffractometry, MasterSizer (Malvern) was used to achieve this. The results from the Malvern were later put to R Statistics where they were clustered into eight clusters to determine similarities and difference of the grain size. Because there is no uniqueness in the soil types found in the study area, there were no solid conclusions made based in them. The results show that the soil types are found across South Africa but not the same amount of dust activity was detected in the other parts of the country. Previous studies show that global significant dust sources are natural sources such as lakes, pans and depressions. However, results demonstrate that South African dust sources are anthropogenic sources resulting from commercial agriculture in semi-arid regions. This study has demonstrated that surface sediments suitable for dust production are a mixture of fine material, silt (50µm) and coarse material, sand (2000µm) and it appears that all clusters in this study all contained both mixtures and all have potential to emit dust.
7

Particle Size Distribution Analysis of a Mining-Impacted Gravel-Bed Stream in Ohio Using a Hybrid Sediment Sampling Technique

Dalecky, Amanda Lee 26 November 2001 (has links)
As part of a risk assessment study of the Leading Creek Watershed in Ohio, a prior Virginia Tech researcher collected pavement and subpavement sediment samples at 17 sites using the hybrid areal sampling technique with a clay adhesive. The watershed, which is heavily impacted by mining and agricultural activities, suffers from low pH, high concentrations of metals and sediment in the water column, and excessively silted streambeds. The current work presents the results of the particle size analyses performed on the hybrid samples in the context of evaluating the effectiveness of the technique itself and as a tool in future watershed/ecological studies, as well as examining possible relationships between siltation and indicators of ecological health in Leading Creek. By combining clay grid and adhesive sampling methods, the hybrid technique consistently achieved an effective particle size sampling range of 0.05 mm (1.97 x 10-3 in) to over 300 mm (11.8 in), thereby reducing the common problem of trunction. However, the overlap of the clay adhesive and natural sediment distributions and atypical sediment loading from surrounding abandoned and reclaimed mine lands obscured expected trends such as downstream fining and hindered the analysis of materials finer than 0.125 mm (4.93 x 10-3 in). Volumetric conversion of areal samples using the Modified Cube Model with a traditional exponent of -1 for clay was complicated by the large amount of fines in the Leading Creek samples. Further investigation into a more appropriate conversion technique for the evaluation of fine sediment samples is warranted. / Master of Science
8

Método de formulação de argamassas de revestimento baseado em distribuição granulométrica e comportamento reológico. / Formulation method for rendering mortars based on particle size distribution and rheological behavior.

Cardoso, Fábio Alonso 11 September 2009 (has links)
O desempenho final das argamassas depende das matérias-primas e de suas proporções na formulação, pois estas determinam o comportamento do material na etapa de aplicação e a microestrutura final do material endurecido. Entre as patologias de revestimentos, a falha de aderência é um dos fenômenos mais freqüentes, sendo originada pela incompatibilidade entre o comportamento reológico da argamassa e a energia de lançamento utilizada, resultando em defeitos na interface argamassa substrato. A adequação das características reológicas das argamassas às solicitações envolvidas na aplicação fornece condições de processamento mais favoráveis para a obtenção das máximas propriedades finais do revestimento. Assim, o objetivo do trabalho é desenvolver critérios de formulação, baseados nas características das matérias-primas, nos modelos de empacotamento de partículas e nos comportamentos reológicos, de modo a obter um método de formulação de argamassas. O método de squeeze-flow foi desenvolvido com sucesso para avaliação reológica de argamassas, sendo as principais variáveis experimentais foram estudadas, assim como o efeito do tipo de mistura no comportamento reológico. Procedimento para quantificação da segregação pasta-agregado foi criado, tendo em vista o intenso efeito que este fenômeno exerce sobre o comportamento reológico em squeeze-flow, especialmente em baixas velocidades. Foi ainda comprovado que o squeeze-flow tem boa relação com a percepção do pedreiro, principalmente, nas etapas de lançamento e aperto. Diversas argamassas nacionais e européias foram caracterizadas, resultando em um mapeamento das características de formulação, do comportamento reológico e das propriedades no estado endurecido. Através da aplicação de conceitos de empacotamento e distância de separação de partículas, foi verificado que a otimização do empacotamento de agregados permite um melhor aproveitamento da pasta para promover argamassas com comportamento reológico mais adequado à aplicação ou com menor consumo de finos e água. As correlações estabelecidas entre as características no estado fluido e as propriedades no estado endurecido permitem prever o comportamento das propriedades no estado endurecido com boa confiabilidade. Por fim, são descritas diretrizes sistemáticas para a formulação de argamassas considerando requisitos de desempenho tanto no estado fresco quanto no endurecido. / The in-use performance of rendering mortars depends on the raw materials features and their content in the formulation, since they have major influence on the material behavior during emplacement, as well as, on its final properties. Adherence failure is one of the most frequent problems of this class of building materials, caused by the incompatibility between rheological behavior and the application process, generating mortar/substrate interface flaws. A rheological behavior more suitable to the application demands, provides appropriate conditions to obtain maximum final rendering properties. Therefore, the main goal of this work is to develop mix-design parameters based on raw materials features, particle packing models and rheological behavior, in order to create a mix-design method for mortars. Squeeze-flow technique was successfully adapted for the rheological evaluation of rendering mortars, and the most important experimental parameters were studied. The method is sensitive enough to measure rheological changes as a function of the mixing process applied. Considering that phase segregation plays an important role on the rheological behavior of concentrated suspensions especially at low speeds, a method was developed to measure paste-aggregate segregation. It was also established that the squeeze-flow agrees well with the workers perception during manual emplacement. Several Brazilian and European products were evaluated, and significant differences were determined on the formulation features, rheological behavior and hardened properties. Using models of particle packing and particle distance, it was verified that optimized packing of aggregates enhances rheological behavior and can also allow the reduction of water and fine particles consumption. The experimental relationships established between fresh characteristics, rheological behavior and final properties can be used to predict hardened features and properties with fair confidence. Lastly, mix-design suggestions are made considering both fresh and hardened performance.
9

Physicochemical properties of protein inclusion bodies

Wangsa-Wirawan, Norbertus Djajasantosa. January 1999 (has links) (PDF)
Bibliography: leaves 182-198. Improvements in the current production system of inclusion bodies and the downstream processing sequence are essential to maintain a competitive advantage in the market place. Optimisation of fermentation is considered to improve production yield; then flotation as a possible inclusion body recovery method.
10

The modeling of arsenic removal from contaminated water using coagulation and sorption

Kim, Jin-Wook 01 November 2005 (has links)
To achieve predictive capability for complex environmental systems with coagulation and arsenic sorption, a unified improved coagulation model coupled with arsenic sorption was developed. A unified coagulation model coupled with arsenic sorption was achieved by the following steps: (1) an improved discretized population balance equation (PBE) was developed to obtain the exact solution of conventional coagulation, (2) the improved PBE was extended to an adjustable geometric size interval having higher numerical stability, accuracy, and computational efficiency than existing models for fractal aggregate coagulation that includes agglomeration and fragmentation, (3) a surface complexation equilibrium model and a sorption kinetic model was introduced to predict arsenic sorption behavior onto hydrous metal oxide surfaces, and (4) an improved discretized PBE was coupled with arsenic sorption kinetics and equilibrium models by aid of collision efficiency ?? depending on surface charge (potential) on the hydrous metal oxide particles, colliding particle size ratio, and fluid strain-rate in applied flow system. The collision efficiency ?? into the improved (r,r)ij(r,r)ijdiscretized coagulation model for fractal aggregate yielded a unified improved coagulation model coupled with arsenic sorption kinetics and the equilibrium model. Thus, an improved unified coagulation model could provide high statistical accuracy, numerical stability, and computational efficiency to enhance predictive capability for behavior of arsenic sorption and fractal colloid particle aggregation and break-up, simultaneously. From the investigation, it is anticipated that the unified coagulation model coupled with arsenic sorption kinetics and equilibrium will provide a more complete understanding of the arsenic removal mechanism and its application to water/wastewater treatment. Further, this coupled model can be applied to other water and wastewater treatment systems combined with sorption and filtration processes. These combined processes can be optimized by the coupled model that was developed in this study. By simulating the arsenic sorption and particle size distribution as a pretreatment before filtration (sand filtration or membrane filtration), the overall arsenic removal efficiency and operation cost can be estimated.

Page generated in 0.1807 seconds