Spelling suggestions: "subject:"fluorescence tracer"" "subject:"afluorescence tracer""
1 |
Processus photophysiques de molécules organiques fluorescentes et du kérosène applications aux foyers de combustion : applications aux foyers de combustion / Photophysical processes of organic fluorescent molecules and kerosene : applications to combustion enginesRossow, Björn 27 September 2011 (has links)
La métrologie laser basée sur l’analyse de la fluorescence de traceurs moléculaires est devenue l’un des outils clefs pour l’étude expérimentale de la dynamique des fluides réactifs. Une étude spectroscopique des propriétés photophysiques de fluorescence dans le domaine spectral UV-visible de plusieurs molécules fluorescentes appartenant aux cétones aliphatiques et aux aromatiques mono- et bicycliques a permis d’approfondir la compréhension de l’influence de la température, de la pression et de la concentration d’oxygène sur leur fluorescence. Les résultats expérimentaux obtenus ont ensuite permis le développement d’un modèle de simulation du rendement de fluorescence pour les espèces aromatiques (naphtalène et toluène), qui fournit des résultats très proches de ceux mesurés.De ces résultats, le développement de la technique d’imagerie de fluorescence (PLIF) sur la phase vapeur d’un carburant multi-composant a conduit à étendre cette analyse spectrale de fluorescence au cas du kérosène (Jet A-1). La comparaison entre les propriétés de fluorescence du kérosène et des traceurs aromatiques étudiés a notamment permis d’établir une stratégie de mesure de la concentration de la phase vapeur du kérosène dans des environnements où la teneur en oxygène est variable. Les signaux de fluorescence provenant des espèces mono- et di-aromatiques contenues dans le kérosène soulignent des évolutions différentes avec les conditions de température et teneur en oxygène. L’utilisation de filtres optiques appropriés associés à deux caméras ICCD permet alors une mesure bidimensionnelle de la température et de la concentration de kérosène en phase vapeur. La thèse débouche finalement sur l’application de cette technique PLIF-kérosène en combinaison avec la technique PLIF du radical OH en sortie d’un système d’injection industriel multi-point de nouvelle génération intégré dans une chambre de combustion haute pression. / Planar laser-induced fluorescence (PLIF) diagnostic based on the optical excitation of fluorescence tracers has become a key tool for the experimental study of fluid dynamics in reactive flows. A spectroscopic fluorescence study of several organic molecules from aliphatic ketones and mono- and bi-cyclic aromatics in gas-phase was performed in a high-pressure high temperature optical cell. The experimental measurements allowed the understanding of the influence of temperature, pressure and oxygen concentration on the photophysics of these molecules in the UV/visible domain. These results were then used to successfully develop a model of fluorescence yield of the naphthalene and toluene aromatic molecules permitting the simulation of the fluorescence signals with temperature, pressure and species composition in large domains of temperature and pressure.This study has been extended to the case of a multi-component aeronautical fuel (kerosene – jet A1) containing natural aromatics. The comparison of the spectroscopic data recorded in the optical cell to those of the aromatic tracers initially probed has then permitted the definition of a kerosene-PLIF excitation/detection strategy for kerosene vapour concentration measurements in reactive gaseous flowfield containing variable oxygen concentration. Fluorescence signals from mono- and di-aromatic species in kerosene highlight significant differences in evolution with temperature and oxygen concentration. With appropriate optical filters applied to two ICCD cameras, the two-dimensional instantaneous distribution of temperature and concentration of kerosene vapour is then possible to measure in reactive flows. Finally, the kerosene-PLIF diagnostic has been applied at the exit of an innovative multi-point aeronautical injection system integrated to high-pressure kerosene/air combustor test rig. The kerosene-PLIF, combined with the radical OH-PLIF confirmed their implementation in realistic high-pressure flowfields and delivered experimental fruitful experimental information on the effect of the fuel/air mixing on the flame structure in the combustion chamber.
|
Page generated in 0.0455 seconds