• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microscopie de fluorescence rapide et optique adaptative pour l'étude fonctionnelle tridimensionnelle in vivo des réseaux neuronaux impliqués dans la mémoire chez Drosophila melanogaster / Fast fluorescence microscopy and adaptive optics for in vivo tridimensional functional imaging of neural circuits involved in memory formation in Drosophila Melanogaster

Pedrazzani, Mélanie 14 December 2015 (has links)
L’utilisation de techniques de microscopie optique de plus en plus performantes a permis des avancées considérables en neurobiologie. Néanmoins, la population de neurones mise en jeu lors de la formation de la mémoire, ainsi que sa dynamique restent à ce jour très peu connues. L’objectif de la thèse est de développer puis d’utiliser deux types de microscopies originales couplées à des sondes fluorescentes de dernière génération (sondes calciques G-CaMP6f et sonde voltage ArcLight) pour l’étude in vivo des réseaux neuronaux impliqués dans la mémorisation chez la drosophile. Le choix du modèle Drosophila melanogaster pour cette étude neurobiologique est justifié par plusieurs atouts uniques : un cerveau peu volumineux, des capacités d’apprentissage remarquables, la possibilité d’analyser un réseau neuronal dans sa globalité avec une résolution cellulaire et la disponibilité d’outils génétiques très perfectionnés pour son étude. Le premier type de microscopie conçu est celui dite à illumination structurée de type HiLo permettant d'obtenir une coupe optique en profondeur. Nous avons alors étudié le rôle de divers récepteurs, tels que les récepteurs dopaminergiques et gabaergiques dans la transmission de l'information punitive jusqu'aux neurones des corps pédonculés. Nous avons également mis en évidence une non-homogénéité spatiale des neurones de type α/β des corps pédonculés en termes d’excitation et d’inhibition en réponse à une stimulation punitive pour une profondeur d’analyse d'environ 10 à 20 µm. Cette profondeur limite étant imposée par les aberrations, nous avons alors implémenté une boucle d’optique adaptative dans notre microscope. Cela a permis de réaliser des analyses morphologiques jusqu’à 50 µm de profondeur. Le second type de microscopie développé est la microscopie multiconfocale de type « spinning disk » dans le but d’imager l’ensemble des corps cellulaires des neurones des corps pédonculés. Le développement de ce projet n'est pas achevé, ce qui n’a pas encore permis de répondre à des questions biologiques d’intérêt. / Cellular and neural network dynamics involved in memory formation remain poorly known despite the progress brought by advanced optical microscopies to neurobiology. The use of Drosophila melanogaster as a model organism constitute one of the most promising approaches due to its unique features: a small brain size, outstanding learning capabilities, very powerful genetic tools and the possibility to analyze a whole neural network with a cellular resolution. To this aim, we implemented two types of optical fluorescence microscopes coupled to cutting-edge fluorescent biosensors, calcic G-CaMP6f and voltage ArcLight probes. We used HiLo structured illumination, a technique able to provide axial optical sectioning, deep in the brain, to study the role of dopaminergic and gabaergic molecular receptors in the transmission of aversive stimulus to mushroom bodies neurons. We also evidenced a non-uniform response of type α/β mushroom bodies neurons under electrical stimulation at 10 to 20 µm depth of analysis. To penetrate deeper in the brain, we added an adaptive optics feedback loop into our microscope in order to overcome aberrations issues. We were then able to rebuild optical sections down to 50 µm depth. The second type of microscopy we developed is a multiconfocal microscope using spinning disk. The aim was to image all the mushroom bodies neurons, at the level of their cell bodies, with a cellular resolution. Since this project is at its beginning, it did not allow us to answer to advanced biological questions yet.
2

Biosenseurs fluorescents appliqués à l’étude de la fonction du réticulum sarcoplasmique dans le couplage excitation-contraction du muscle squelettique / Investigating sarcoplasmic reticulum function during skeletal muscle excitation-contraction coupling using fluorescent biosensors

Sanchez, Colline 27 September 2019 (has links)
La cascade d’évènements permettant la contraction de la fibre musculaire striée squelettique en réponse à l’activité électrique de sa membrane plasmique est regroupée sous le terme de couplage excitation-contraction (EC). Le couplage EC a lieu au niveau des triades, domaines nanoscopiques au niveau desquels les invaginations transversales de la membrane plasmique (tubules-T) sont en contact étroit avec deux citernes terminales adjacentes de réticulum sarcoplasmique (RS). Plus précisément, lors de l’excitation d’une fibre musculaire, un potentiel d’action se propage dans toute la surface de la membrane plasmique et en profondeur de la cellule via les tubules-T. Cette dépolarisation y est détectée par les protéines membranaires sensibles au potentiel Cav1.1 qui en retour, par couplage mécanique, déclenchent l’ouverture des canaux calciques du RS que sont les récepteurs de la ryanodine de type 1 (RYR1s). Ceci est à l’origine de l’augmentation massive de Ca2+ intracellulaire qui déclenche l’activation des myofilaments et donc la contraction. La compréhension des mécanismes de contrôle et de régulation des canaux RYR1s reste encore aujourd’hui limitée. En particulier, la mesure de l’activité physiologique de ces canaux dans la fibre musculaire intacte est toujours réalisée de manière très indirecte. Par ailleurs le rôle éventuel de variations de potentiel de la membrane du RS pendant l’activité musculaire n’a jamais été révélé. Une connaissance approfondie de ces phénomènes est pourtant essentielle à la compréhension de la fonction musculaire squelettique normale et pathologique. Dans ce contexte, l’objectif général de mon projet de thèse a été de mettre au point et utiliser des biosenseurs fluorescents localisés spécifiquement à la membrane des citernes terminales du RS de fibres musculaires différenciées – par leur fusion à une séquence d’adressage appropriée. Grâce à la combinaison des techniques d’électrophysiologie et d’imagerie de la fluorescence des biosenseurs sur fibres musculaires isolées, nous avons pu étudier l’activité du RS au cours de la fonction musculaire. Plus particulièrement, mon travail de thèse aborde deux problèmes biologiques principaux : le potentiel de membrane du RS et la signalisation calcique du RS au cours du couplage EC. Le premier objectif a visé à caractériser les changements de potentiel de la membrane du RS pendant l’activation du couplage EC. Pour cela, nous avons utilisé des biosenseurs de FRET de la famille Mermaid. Nos résultats montrent qu’il n’y a pas de changement substantiel du potentiel transmembranaire du RS pendant l’activation du couplage EC. Ces données confirment – pour la première fois en condition physiologique – que le flux de Ca2+ à travers les canaux RYR1s est équilibré par des contre-flux ioniques compensatoires qui permettent le maintien du potentiel de membrane du RS. Ceci assure la pérennité du flux de Ca2+ et contribue à l’efficacité du couplage EC. Le deuxième objectif a visé à détecter les variations de concentration en Ca2+ à proximité immédiate des canaux RYR1s. Pour cela, nous avons utilisé le biosenseur fluorescent sensible au Ca2+ GCamP6f. Le biosenseur adressé à la membrane du RS fournit un accès unique à l’activité individuelle de populations distinctes de canaux RYR1s au sein de différentes triades d’une même fibre musculaire. Au-delà de la caractérisation détaillée des propriétés des sondes GCaMP6f dans cette préparation, nos résultats montrent la stupéfiante synchronisation de l’activité de libération de Ca2+ des triades d’une même fibre musculaire au cours du couplage EC. Les résultats ouvrent des perspectives particulièrement intéressantes pour les études de situations pathologiques d’altération de l’activité des canaux RYR1s / Excitation-contraction (EC) coupling in skeletal muscle corresponds to the sequence of events through which muscle fiber contraction is triggered in response to plasma membrane electrical activity. EC coupling takes place at the triads; these are nanoscopic domains in which the transverse invaginations (t-tubules) of the surface membrane are in closed apposition with two adjacent terminal cisternae of the sarcoplasmic reticulum membrane (SR). More precisely, EC coupling starts with action potentials fired at the endplate, propagating throughout the surface membrane and in depth into the muscle fiber through the t-tubules network. When reaching the triadic region, action potentials activate the voltage-sensing protein Cav1.1. In turns, Cav1.1 directly open up the type 1 ryanodine receptor (RYR1) in the immediately adjacent SR membrane, through intermolecular conformational coupling. This triggers RYR1-mediated SR Ca2+ release which produces an increase in cytosolic Ca2+ triggering contraction. Current understanding of the mechanisms involved in the control and regulation of RYR1 channels function is still limited. One reason is related to the fact that detection of RYR1 channel activity in intact muscle fibers is only achieved with indirect methods. Also, whether SR the membrane voltage experiences changes during muscle activity has so far never been experimentally assessed. Yet, deeper knowledge of these processes is essential for our understanding of muscle function in normal and disease conditions. In this context, the general aim of my PhD project was to design and use fluorescent protein biosensors specifically localized at the SR membrane of differentiated muscle fibers, by fusing them to an appropriate targeting sequence. Thanks to a combination of single cell physiology and biophysics techniques based on electrophysiology and biosensor fluorescence detection, we were able to study the SR activity during muscle fiber function. Specifically, my PhD work focused on two major issues: SR membrane voltage and SR calcium signaling during EC coupling. The first aim of my work was to characterize SR membrane voltage changes during muscle fiber activity. For this, we used voltage sensitive FRET-biosensors of the Mermaid family. Results show that the SR trans-membrane voltage experiences no substantial change during EC coupling. This provides the first experimental evidence, in physiological conditions, for the existence of ion counter-fluxes that balance the charge deficit associated with RYR1-mediated SR Ca2+ release. Indeed, this process is essential for maintaining the SR Ca2+ flux upon RYR1 channels opening and thus critically important for EC coupling efficiency. The second objective of my work aimed at detecting the changes in Ca2+ concentration occurring in the immediate vicinity of the RYR1 Ca2+ release channels during muscle fiber activation. For this, we took advantage of one member of the recent generation of genetically encoded Ca2+ biosensor: GCaMP6f. The SR-targeted biosensor provides a unique access to the individual activity of RYR1 channels populations within distinct triads of a same muscle fiber. Beyond allowing a detailed characterization of the biosensor properties in this preparation, results highlight the remarkable uniformity of SR Ca2+ release activation from one triad to another, during EC coupling. These results open up stimulating perspectives for the investigation of disease conditions associated with defective behavior of RYR1 channels.

Page generated in 0.0895 seconds