• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bacteriophage SPP1 entry into the host cell

Jakutyte, Lina 15 December 2011 (has links) (PDF)
The four main steps of bacterial viruses (bacteriophages) lytic infection are (i) specific recognition and genome entry into the host bacterium, (ii) replication of the viral genome, (iii) assembly of viral particles, and (iv) their release, leading in most cases to cell lysis. Although the course of individual steps of the viral infection cycle has been relatively well established, the details of how viral DNA transits from the virion to the host cytoplasm and of how the cellular environment catalyzes and possibly organizes the entire process remain poorly understood.Tailed bacteriophages are by far the most abundant viruses that infect Eubacteria. The first event in their infection is recognition of a receptor on the surface of host bacterium by the phage adsorption machinery. The barriers that the infectious particle overcomes subsequently are the cell wall and the cytoplasmic membrane of bacteria. This implies a localized degradation of the wall and the flow of its double stranded DNA (dsDNA) through a hydrophilic pore in the membrane. The lineards DNA molecule is most frequently circularized in the cytoplasm followed by its replication. In this study we used bacteriophage SPP1 that infects the Gram-positive bacterium Bacillus subtilis as a model system to dissect the different steps leading to transfer of the phage genome from the viral capsid to the host cell cytoplasm.normally to B. subtilis but do not trigger depolarization of the CM. Attachment of intact SPP1 particles is thus required for phage-induced depolarization.The beginning of B. subtilis infection by bacteriophage SPP1 was followed inspace and time. The position of SPP1 binding at the cell surface was imaged by fluorescence microscopy using virus particles labeled with "quantum dots". We found that SPP1 reversible adsorption occurs preferentially at the cell poles. This initial binding facilitates irreversible adsorption to the SPP1 phage receptor protein YueB,which is encoded by a putative type VII secretion system gene cluster.Immunostaining and YueB - GFP fusion showed that the phage receptor protein YueB is found over the entire cell surface. It concentrates at the bacterial poles too,and displays a punctate distribution over the sidewalls. The dynamics of SPP1 DNA entry and replication was visualised in real time by assaying specific binding of a fluorescent protein to tandem sequences present in the SPP1 genome. During infection, most of the infecting phages DNA entered and replicated near the bacterial poles in a defined focus. Therefore, SPP1 assembles a replication factory at a specific location in the host cell cytoplasm. DNA delivery to the cytoplasm depends on millimolar concentrations of Ca2+ allowing uncoupling it from the precedent steps of SPP1 adsorption to the cell envelope and CM depolarization that require only micromolar amounts of this divalent cation. A model describing the early events of bacteriophage SPP1 infection is presented.
2

Bacteriophage SPP1 entry into the host cell / Entrée de bactériophage SPP1 dans la cellule hôte

Jakutyte, Lina 15 December 2011 (has links)
Les quatre étapes principales d'infection des bactéries par leurs virus sont (i) la reconnaissance spécifique de la cellule hôte et l'entrée du génome dans le cytoplasme,(ii) la réplication du génome viral, (iii) l'assemblage des particules virales, et (iv) leur relâchement, menant dans la plupart des cas à la lyse de la cellule. Bien que la description des étapes individuelles du cycle viral a été relativement bien établie, les détails de comment d'ADN viral chemine du virion jusqu’au cytoplasme de la bactérie hôte et de comment l'environnement cellulaire participe au processus restent mal compris.La première étape de l’infection est la reconnaissance d’un récepteur à la surface de la bactérie hôte par la machinerie d’adsorption du phage. Les barrières que l’agent infectieux doit franchir par la suite sont la membrane externe de la bactérie Gram-negative, la paroi cellulaire et la membrane cytoplasmique. Ceci implique une dégradation localisée de la paroi et le cheminement de l’ADN à travers un pore dans la membrane. L‘ADN linéaire se circularise normalement dans le cytoplasme et il est répliqué par la suite. On a utilisé le bactériophage SPP1 qui infecte la bactérie Gram-positive Bacillus subtilis comme modèle d’étude pour disséquer ces différentes étapes clés pour le démarrage de l’infection virale. Dans ce travail de thèse les conditions d’infection et d’acquisition de données pour suivre en temps réel la dépolarisation de la membrane cellulaire de B. subtilis lors de l’infection par SPP1 ont été mis au point. Il est montré que le démarrage de l’infection déclenche une dépolarisation très rapide de la membrane cytoplasmique.Le potentiel de membrane n’est plus rétablit pendant toute la durée du cycle d'infection. Ce changement du potentiel de membrane au début de l’infection dépend de la présence du récepteur YueB. L’amplitude de la dépolarisation dépend du nombre de particules virales infectieuses présentes et de la concentration du récepteur YueB à la surface de la bactérie hôte. L’interaction du phage avec le récepteur YueB conduit à l’interaction irréversible et à l'éjection de l’ADN de SPP1. Pour établir si c’est l’interaction avec YueB ou le début de l’entrée de l’ADN qui conduit à la dépolarisation de la membrane on a utilisé des phages SPP1 éclates par EDTA qui adsorbent normalement à B. subtilis mais qui n’avaient plus leur ADN. Les résultats obtenus ont montré que la dépolarisation requiert l’interaction du virus intacte avec le récepteur YueB. Des concentrations sous-millimolaire de Ca2+ sont nécessaires et suffisantes pour SPP1 liaison réversible à l'enveloppe d'hôte et donc de déclencher la dépolarisation.La cinétique d’entrée de l’ADN du bactériophage SPP1 dans la bactérie Bacillus subtilis a été suivie en temps réel par microscopie de fluorescence. On a mis au point une méthode de microscopie pour visualiser des particules virales marquées avec des «quantum dots» ce qui permit de démontrer que ces particules se fixent préférentiellement aux pôles des bacilli. L’immuno-marquage du récepteur de SPP1,la protéine YueB, a montré que celle-ci a une organisation ponctuée à la surface de B.subtilis et se concentre particulièrement aux extrémités de la bactérie. Cette localisation particulière du phage sur la surface de la cellule hôte corrèle avec l’observation que l’ADN viral rentre dans le cytoplasme (<2 min) et se réplique dans des foci situés dans la plupart des cas à proximité des pôles de B. subtilis. L’étude spatio-temporelle de l’interaction de SPP1 avec son hôte Gram-positive montre que le virus cible des régions spécifiques de la bactérie pour son entrée et pour sa réplication. Transfert d'ADN dans le cytoplasme dépend des concentrations millimolaires de Ca2+. Un modèle décrivant les événements précoces de l'infection bactériophage SPP1 est présenté. / The four main steps of bacterial viruses (bacteriophages) lytic infection are (i) specific recognition and genome entry into the host bacterium, (ii) replication of the viral genome, (iii) assembly of viral particles, and (iv) their release, leading in most cases to cell lysis. Although the course of individual steps of the viral infection cycle has been relatively well established, the details of how viral DNA transits from the virion to the host cytoplasm and of how the cellular environment catalyzes and possibly organizes the entire process remain poorly understood.Tailed bacteriophages are by far the most abundant viruses that infect Eubacteria. The first event in their infection is recognition of a receptor on the surface of host bacterium by the phage adsorption machinery. The barriers that the infectious particle overcomes subsequently are the cell wall and the cytoplasmic membrane of bacteria. This implies a localized degradation of the wall and the flow of its double stranded DNA (dsDNA) through a hydrophilic pore in the membrane. The lineards DNA molecule is most frequently circularized in the cytoplasm followed by its replication. In this study we used bacteriophage SPP1 that infects the Gram-positive bacterium Bacillus subtilis as a model system to dissect the different steps leading to transfer of the phage genome from the viral capsid to the host cell cytoplasm.normally to B. subtilis but do not trigger depolarization of the CM. Attachment of intact SPP1 particles is thus required for phage-induced depolarization.The beginning of B. subtilis infection by bacteriophage SPP1 was followed inspace and time. The position of SPP1 binding at the cell surface was imaged by fluorescence microscopy using virus particles labeled with "quantum dots". We found that SPP1 reversible adsorption occurs preferentially at the cell poles. This initial binding facilitates irreversible adsorption to the SPP1 phage receptor protein YueB,which is encoded by a putative type VII secretion system gene cluster.Immunostaining and YueB – GFP fusion showed that the phage receptor protein YueB is found over the entire cell surface. It concentrates at the bacterial poles too,and displays a punctate distribution over the sidewalls. The dynamics of SPP1 DNA entry and replication was visualised in real time by assaying specific binding of a fluorescent protein to tandem sequences present in the SPP1 genome. During infection, most of the infecting phages DNA entered and replicated near the bacterial poles in a defined focus. Therefore, SPP1 assembles a replication factory at a specific location in the host cell cytoplasm. DNA delivery to the cytoplasm depends on millimolar concentrations of Ca2+ allowing uncoupling it from the precedent steps of SPP1 adsorption to the cell envelope and CM depolarization that require only micromolar amounts of this divalent cation. A model describing the early events of bacteriophage SPP1 infection is presented.
3

Biosenseurs fluorescents appliqués à l’étude de la fonction du réticulum sarcoplasmique dans le couplage excitation-contraction du muscle squelettique / Investigating sarcoplasmic reticulum function during skeletal muscle excitation-contraction coupling using fluorescent biosensors

Sanchez, Colline 27 September 2019 (has links)
La cascade d’évènements permettant la contraction de la fibre musculaire striée squelettique en réponse à l’activité électrique de sa membrane plasmique est regroupée sous le terme de couplage excitation-contraction (EC). Le couplage EC a lieu au niveau des triades, domaines nanoscopiques au niveau desquels les invaginations transversales de la membrane plasmique (tubules-T) sont en contact étroit avec deux citernes terminales adjacentes de réticulum sarcoplasmique (RS). Plus précisément, lors de l’excitation d’une fibre musculaire, un potentiel d’action se propage dans toute la surface de la membrane plasmique et en profondeur de la cellule via les tubules-T. Cette dépolarisation y est détectée par les protéines membranaires sensibles au potentiel Cav1.1 qui en retour, par couplage mécanique, déclenchent l’ouverture des canaux calciques du RS que sont les récepteurs de la ryanodine de type 1 (RYR1s). Ceci est à l’origine de l’augmentation massive de Ca2+ intracellulaire qui déclenche l’activation des myofilaments et donc la contraction. La compréhension des mécanismes de contrôle et de régulation des canaux RYR1s reste encore aujourd’hui limitée. En particulier, la mesure de l’activité physiologique de ces canaux dans la fibre musculaire intacte est toujours réalisée de manière très indirecte. Par ailleurs le rôle éventuel de variations de potentiel de la membrane du RS pendant l’activité musculaire n’a jamais été révélé. Une connaissance approfondie de ces phénomènes est pourtant essentielle à la compréhension de la fonction musculaire squelettique normale et pathologique. Dans ce contexte, l’objectif général de mon projet de thèse a été de mettre au point et utiliser des biosenseurs fluorescents localisés spécifiquement à la membrane des citernes terminales du RS de fibres musculaires différenciées – par leur fusion à une séquence d’adressage appropriée. Grâce à la combinaison des techniques d’électrophysiologie et d’imagerie de la fluorescence des biosenseurs sur fibres musculaires isolées, nous avons pu étudier l’activité du RS au cours de la fonction musculaire. Plus particulièrement, mon travail de thèse aborde deux problèmes biologiques principaux : le potentiel de membrane du RS et la signalisation calcique du RS au cours du couplage EC. Le premier objectif a visé à caractériser les changements de potentiel de la membrane du RS pendant l’activation du couplage EC. Pour cela, nous avons utilisé des biosenseurs de FRET de la famille Mermaid. Nos résultats montrent qu’il n’y a pas de changement substantiel du potentiel transmembranaire du RS pendant l’activation du couplage EC. Ces données confirment – pour la première fois en condition physiologique – que le flux de Ca2+ à travers les canaux RYR1s est équilibré par des contre-flux ioniques compensatoires qui permettent le maintien du potentiel de membrane du RS. Ceci assure la pérennité du flux de Ca2+ et contribue à l’efficacité du couplage EC. Le deuxième objectif a visé à détecter les variations de concentration en Ca2+ à proximité immédiate des canaux RYR1s. Pour cela, nous avons utilisé le biosenseur fluorescent sensible au Ca2+ GCamP6f. Le biosenseur adressé à la membrane du RS fournit un accès unique à l’activité individuelle de populations distinctes de canaux RYR1s au sein de différentes triades d’une même fibre musculaire. Au-delà de la caractérisation détaillée des propriétés des sondes GCaMP6f dans cette préparation, nos résultats montrent la stupéfiante synchronisation de l’activité de libération de Ca2+ des triades d’une même fibre musculaire au cours du couplage EC. Les résultats ouvrent des perspectives particulièrement intéressantes pour les études de situations pathologiques d’altération de l’activité des canaux RYR1s / Excitation-contraction (EC) coupling in skeletal muscle corresponds to the sequence of events through which muscle fiber contraction is triggered in response to plasma membrane electrical activity. EC coupling takes place at the triads; these are nanoscopic domains in which the transverse invaginations (t-tubules) of the surface membrane are in closed apposition with two adjacent terminal cisternae of the sarcoplasmic reticulum membrane (SR). More precisely, EC coupling starts with action potentials fired at the endplate, propagating throughout the surface membrane and in depth into the muscle fiber through the t-tubules network. When reaching the triadic region, action potentials activate the voltage-sensing protein Cav1.1. In turns, Cav1.1 directly open up the type 1 ryanodine receptor (RYR1) in the immediately adjacent SR membrane, through intermolecular conformational coupling. This triggers RYR1-mediated SR Ca2+ release which produces an increase in cytosolic Ca2+ triggering contraction. Current understanding of the mechanisms involved in the control and regulation of RYR1 channels function is still limited. One reason is related to the fact that detection of RYR1 channel activity in intact muscle fibers is only achieved with indirect methods. Also, whether SR the membrane voltage experiences changes during muscle activity has so far never been experimentally assessed. Yet, deeper knowledge of these processes is essential for our understanding of muscle function in normal and disease conditions. In this context, the general aim of my PhD project was to design and use fluorescent protein biosensors specifically localized at the SR membrane of differentiated muscle fibers, by fusing them to an appropriate targeting sequence. Thanks to a combination of single cell physiology and biophysics techniques based on electrophysiology and biosensor fluorescence detection, we were able to study the SR activity during muscle fiber function. Specifically, my PhD work focused on two major issues: SR membrane voltage and SR calcium signaling during EC coupling. The first aim of my work was to characterize SR membrane voltage changes during muscle fiber activity. For this, we used voltage sensitive FRET-biosensors of the Mermaid family. Results show that the SR trans-membrane voltage experiences no substantial change during EC coupling. This provides the first experimental evidence, in physiological conditions, for the existence of ion counter-fluxes that balance the charge deficit associated with RYR1-mediated SR Ca2+ release. Indeed, this process is essential for maintaining the SR Ca2+ flux upon RYR1 channels opening and thus critically important for EC coupling efficiency. The second objective of my work aimed at detecting the changes in Ca2+ concentration occurring in the immediate vicinity of the RYR1 Ca2+ release channels during muscle fiber activation. For this, we took advantage of one member of the recent generation of genetically encoded Ca2+ biosensor: GCaMP6f. The SR-targeted biosensor provides a unique access to the individual activity of RYR1 channels populations within distinct triads of a same muscle fiber. Beyond allowing a detailed characterization of the biosensor properties in this preparation, results highlight the remarkable uniformity of SR Ca2+ release activation from one triad to another, during EC coupling. These results open up stimulating perspectives for the investigation of disease conditions associated with defective behavior of RYR1 channels.

Page generated in 0.0695 seconds