• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study on Contamination of Fluorotelomer Alcohols (FTOHs) and Perfluoroalkyl Carboxylates (PFCAs) in Air in Thailand and Japan, and their Distribution to Water Environment / タイ王国と日本の大気環境におけるフッ素テロマーアルコール類とペルフルオロカルボン酸の存在実態の把握と水環境への移行に関する研究

Jira Kongpran 24 September 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(地球環境学) / 甲第18628号 / 地環博第123号 / 新制||地環||25(附属図書館) / 31528 / 京都大学大学院地球環境学舎環境マネジメント専攻 / (主査)教授 藤井 滋穂, 教授 梶井 克純, 准教授 田中 周平 / 学位規則第4条第1項該当 / Doctor of Global Environmental Studies / Kyoto University / DFAM
2

FTOH Biodegradation Properties and PFOA Impact on Microorganisms in Activated Sludge / 活性汚泥におけるFTOHの生物分解特性と構成微生物群に及ぼすPFOAの影響

Yu, Xiaolong 23 January 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20814号 / 工博第4418号 / 新制||工||1686(附属図書館) / 京都大学大学院工学研究科都市環境工学専攻 / (主査)教授 伊藤 禎彦, 教授 田中 宏明, 准教授 西村 文武 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
3

Factors Affecting Biodefluorination of Fluorotelomer Alcohols (FTOHs): Degradative Microorganisms, Transformation Metabolites and Pathways, and Effects of Co-substrates

Kim, Myung Hee 1982- 14 March 2013 (has links)
Fluorotelomer alcohols (FTOHs, F(CF2)nCH2CH2OH) are emerging contaminants in the environment. Biodegradation of 6:2 and 8:2 FTOHs has been intensively studied using soils and activated sludge. However, little is known about the bacteria responsible for biotransformation of FTOHs. This study deciphered factors affecting biodefluorination of FTOHs and their metabolites, and developed three effective FTOH-degrading consortia. Two alkane-degrading Pseudomonas strains (P. oleovorans and P. butanovora) can defluorinate 4:2, 6:2 and 8:2 FTOHs, with a higher degree of defluorination for 4:2 FTOH. According to the identified metabolites, P. oleovorans transformed FTOHs via two pathways I and II. Pathway I led to formation of x:2 ketone (x = n-1), x:2 sFTOH and perfluorinated carboxylic acids (PFCAs). Pathway II resulted in the formation of x:3 polyfluorinated acid and relatively minor shorter-chain PFCAs. Conversely, P. butanovora transformed FTOHs by pathway I only. Mycobacterium vaccae JOB5 (a C1-C22alkane-degrading bacterium) and P. fluorescens DSM 8341 (a fluoroacetate-degrading bacterium) can transform 6:2 FTOH via both pathways I and II with the formation of odd-numbered short-chain PFCAs. In the presence of dicyclopropylketone or formate, P. oleovorans transformed 6:2 FTOH six times faster and produced odd-numbered PFCAs. P. butanovora, utilized both pathways I and II in the presence of lactate, and it also produced odd-numbered PFCAs. Unlike P. oleovorans, P. fluorescens DSM 8341 could slightly convert 5:3 polyfluorinated acid (a key metabolite during 6:2 FTOH degradation, [F(CF2)5CH2CH2COOH]) to 4:3 acid and PFPeA via one-carbon removal pathways. Three FTOH-degrading consortia transformed FTOHs, with enhanced removal of FTOHs in the presence of n-octane. A higher copy number of alkB gene was found to correspond to better removal of FTOHs, suggesting that alkane-degrading bacteria might be the key degraders in the enrichments. The three enrichment cultures showed a similar microbial community structure. This is the first study reporting that pure strains of alkane- and fluoroacetate-degrading bacteria can bio-transform FTOHs via different or preferred transformation pathways to remove multiple –CF2– groups from FTOHs to form shorter-chain PFCAs, and to other perfluorinated acids. The results of this study also suggest that enhanced FTOH biodegradation is possible through co-substrate addition and/or using enrichment cultures.

Page generated in 0.0497 seconds