Spelling suggestions: "subject:"fluxo geodésico"" "subject:"fluxo geodésicos""
1 |
Sistemas IntegráveisOLIVEIRA, Adriano Veiga de January 2003 (has links)
Made available in DSpace on 2014-06-12T18:31:58Z (GMT). No. of bitstreams: 2
arquivo8529_1.pdf: 505519 bytes, checksum: f91a61d515cd623c26a255c91e65d84c (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2003 / O principal objetivo deste trabalho e apresentar a teoria dos Sistemas Hamiltonianos Integráveis e aplicá-lo ao estudo de dois problemas básicos que servem como introdução à literatura geral. São eles, o fluxo geodésico no elipsóide e o problema mecânico de Neumann. Alem disso, veremos que H.Knöer, usando a aplicação de Gauss do elipsóide na esfera unitária, mostrou que existe uma equivalência entre os dois problemas mecânicos. Usamos como principais referencias os textos [1], [2], [6], [7] e [8]. A tese e organizada da seguinte forma: No capítulo 1 apresentaremos alguns conceitos básicos de mecânica hamiltoniana e lagrangeana sobre uma variedade e mostraremos a correspondência que existe entre sistemas mecânicos hamiltonianos e lagrangeanos. A seguir estudaremos um pouco de princípio variacional e da teoria clássica dos sistemas hamiltonianos integráveis através do estudo das funções geradoras e da teoria de Hamilton- Jacobi. No capítulo 2, estudaremos um pouco da teoria dos grupos de Lie que são de suma importância no estudo de sistemas hamiltonianos com simetria e apresentaremos uma maneira de construir integrais de movimento para um sistema hamiltoniano através da aplicacao momento. No capítulo 3, daremos algumas definições básicas sobre a teoria geométrica dos sistemas hamiltonianos integráveis e demonstraremos um dos resultados mais importantes dessa teoria, o teorema de Arnold-Liouville que caracteriza o espaço de fases de um sistema integrável. No capítulo 4, aplicamos a teoria dos sistemas hamiltonianos integráveis ao estudo do fluxo geodésico no elipsóide e do problema mecânico de Neumann
|
2 |
Métodos Geométrcos no Estudo e Integrabilidade do Fluxo GeodésicoCruz, Felipe Moscozo Araújo da January 2012 (has links)
Submitted by Diogo Barreiros (diogo.barreiros@ufba.br) on 2016-06-14T14:59:20Z
No. of bitstreams: 1
Dissertacao Felipe Moscozo.pdf: 987997 bytes, checksum: 06d91cffa57c16769bb3aee35f257fe1 (MD5) / Approved for entry into archive by Alda Lima da Silva (sivalda@ufba.br) on 2016-06-14T15:33:04Z (GMT) No. of bitstreams: 1
Dissertacao Felipe Moscozo.pdf: 987997 bytes, checksum: 06d91cffa57c16769bb3aee35f257fe1 (MD5) / Made available in DSpace on 2016-06-14T15:33:04Z (GMT). No. of bitstreams: 1
Dissertacao Felipe Moscozo.pdf: 987997 bytes, checksum: 06d91cffa57c16769bb3aee35f257fe1 (MD5) / O presente trabalho tem como objetivo o estudo de métodos geométricos úteis
na integração por quadraturas de uxos geodésicos.
Além de discutir a abordagem simplética, tradicionalmente adotada neste tipo de problema,
apresentamos também uma nova abordagem baseada na noção de estrutura solúvel.
A aplicação destes métodos é ilustrada através de alguns exemplos.
|
Page generated in 0.0283 seconds