• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 6
  • Tagged with
  • 13
  • 13
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hybrid air foil bearing with external pressurization

Park, Soongook 15 May 2009 (has links)
Foil bearings are widely used for oil-free micro turbomachinery. One of the critical technical issues related to reliability of the foil bearings is a coating wear on the top foil and rotor during start/stops. Bearing cooling is also mandatory for certain applications because the foil bearings can generate significant amount of heat depending on operating conditions. Usually axial flow is used through the space between the top foil and bearing sleeve. In this thesis, a hybrid air foil bearing with external pressurization is introduced. The hybrid operation eliminates the coating wear during start-up/shut down, and also reduces drag torque during starts. Furthermore, this hybrid foil bearing does not need cooling system. An experimental test with a loaded bearing under hydrostatic mode demonstrates the high potential of hybrid air foil bearings. The load capacity of the hybrid foil bearing was measured at 20,000 rpm, and compared with that of hydrodynamic foil bearing. The hybrid foil bearing has much higher load capacity than the hydrodynamic foil bearing. The starting torque was also measured and compared with hydrodynamic bearing. A simple analytical model to calculate top foil deflection under hydrostatic pressurization has been developed. Predictions via orbit simulations indicate the hybrid air foil bearings can have a much higher critical speed and onset speed of instability than the hydrodynamic counter part. Major benefits of the hybrid foil bearings also include very low starting torque, reduced wear of the top foil and rotor, and very effective cooling capability by the pressurized air itself. This new concept of hybrid air foil bearings are expected to be widely applied to the oil free turbomachinery industry, especially for heavily loaded and/or high temperature applications.
2

Hybrid air foil bearing with external pressurization

Park, Soongook 15 May 2009 (has links)
Foil bearings are widely used for oil-free micro turbomachinery. One of the critical technical issues related to reliability of the foil bearings is a coating wear on the top foil and rotor during start/stops. Bearing cooling is also mandatory for certain applications because the foil bearings can generate significant amount of heat depending on operating conditions. Usually axial flow is used through the space between the top foil and bearing sleeve. In this thesis, a hybrid air foil bearing with external pressurization is introduced. The hybrid operation eliminates the coating wear during start-up/shut down, and also reduces drag torque during starts. Furthermore, this hybrid foil bearing does not need cooling system. An experimental test with a loaded bearing under hydrostatic mode demonstrates the high potential of hybrid air foil bearings. The load capacity of the hybrid foil bearing was measured at 20,000 rpm, and compared with that of hydrodynamic foil bearing. The hybrid foil bearing has much higher load capacity than the hydrodynamic foil bearing. The starting torque was also measured and compared with hydrodynamic bearing. A simple analytical model to calculate top foil deflection under hydrostatic pressurization has been developed. Predictions via orbit simulations indicate the hybrid air foil bearings can have a much higher critical speed and onset speed of instability than the hydrodynamic counter part. Major benefits of the hybrid foil bearings also include very low starting torque, reduced wear of the top foil and rotor, and very effective cooling capability by the pressurized air itself. This new concept of hybrid air foil bearings are expected to be widely applied to the oil free turbomachinery industry, especially for heavily loaded and/or high temperature applications.
3

Design, analyses and experimental study of a foil gas bearing with compression springs as a compliance support

Song, Ju Ho 02 June 2009 (has links)
A new foil bearing with compression springs is designed, built, analyzed, and tested. This foil gas bearing uses a series of compression springs as a compliant structure instead of corrugated bump foils. A spring model to estimate the stiffness of compression springs was developed and showed a good level of agreement with the experimental results. The spring dynamics model was combined with a non-linear orbit simulation to investigate the non-linear behavior of foil gas bearings. The approach could also predict the structural loss factor given the geometry of the underlying springs. A series of rotor-bearing orbit simulations using the compression spring with stiffness of the free-free case, predicted the critical speed and the onset speed of instability at around 7500 rpm and 14,500 rpm with a WFR ~ 0.5. The low critical speed was due to the relatively soft support. The hydrodynamic rotor instability was predicted under the equivalent viscous damping extracted from the spring dynamics, implying the viscous damping alone within the spring cannot suppress hydrodynamic instability of the foil gas bearings. The load capacity of the compression spring foil gas bearing was measured at 20,000 rpm with and without air cooling, to demonstrate the feasibility of the new foil bearing. The constructed bearing with rather soft springs showed a small load capacity of 96N at 20,000 rpm under no cooling. The developed cooling method using direct air supply holes machined on the bearing sleeve, proved to be very effective in cooling the test bearing. The measured level of structural stiffness and damping evidenced the existence of a necessary level of damping for stable bearing operation. The structural stiffness was highly nonlinear and showed different behavior for static loading and the sinusoidal dynamic loading. The measured equivalent viscous damping coefficients increased with the applied load amplitude. A series of parametric design studies were performed to investigate the effects of various design parameters on the bearing stiffness and overall rotordynamic performance. Rotor-bearing orbit simulations showed there is a range of spring stiffness for high onset speeds of instability. Increasing the pitch of the spring while maintaining the same stiffness increased the structural loss factor slightly, manifesting a smaller number of coils is better in terms of damping. The onset speed of instability increases slightly with the rotor mass due to increased static eccentricity and presumably smaller cross-coupled stiffness. However, increasing the rotor mass in order to render a high eccentricity was not effective in increasing the onset speed of instability because of reduced natural frequency and increased inertia. Instead, orbit simulations confirmed that small rotor mass with external loading is the most effective way to increase the bearing stability.
4

Analysis of side end pressurized bump type gas foil bearings: a model anchored to test data

Kim, Tae Ho 15 May 2009 (has links)
Comprehensive modeling of gas foil bearings (GFBs) anchored to reliable test data will enable the widespread usage of GFBs into novel turbomachinery applications, such as light weight business aircraft engines, hybrid fuel cell-turbine power systems, and micro-engines recharging battery packs for clean hybrid electric vehicles. Pressurized air is often needed to cool GFBs and to carry away heat conducted from a hot turbine in oil-free micro turbomachinery. Side end pressurization, however, demonstrates a profound effect on the rotordynamic performance of GFBs. This dissertation presents the first study that devotes considerable attention to the effect of side end pressurization on delaying the onset rotor speed of subsynchronous motions. GFB performance depends largely on the support elastic structure, i.e. a smooth foil on top of bump strips. The top foil on bump strips layers is modeled as a two dimensional (2D), finite element (FE) shell supported on axially distributed linear springs. The structural model is coupled to a unique model of the gas film governed by modified Reynolds equation with the evolution of gas flow circumferential velocity, a function of the side end pressure. Predicted direct stiffness and damping increase as the pressure raises, while the difference in cross-coupled stiffnesses, directly related to rotor-bearing system stability, decreases. Prediction also shows that side end pressurization delays the threshold speed of instability. Dynamic response measurements are conducted on a rigid rotor supported on GFBs. Rotor speed-up tests first demonstrate the beneficial effect of side end pressurization on delaying the onset speed of rotor subsynchronous motions. The test data are in agreement with predictions of threshold speed of instability and whirl frequency ratio, thus validating the model of GFBs with side end pressurization. Rotor speed coastdown tests at a low pressure of 0.35 bar evidence nearly uniform normalized rotor motion amplitudes and phase angles with small and moderately large imbalance masses, thus implying a linear rotor response behavior. A finite element rotordynamic model integrates the linearized GFB force coefficients to predict the synchronous responses of the test rotor. A comparison of predictions to test data demonstrates an excellent agreement and successfully validates the rotordynamic model.
5

Analysis of side end pressurized bump type gas foil bearings: a model anchored to test data

Kim, Tae Ho 10 October 2008 (has links)
Comprehensive modeling of gas foil bearings (GFBs) anchored to reliable test data will enable the widespread usage of GFBs into novel turbomachinery applications, such as light weight business aircraft engines, hybrid fuel cell-turbine power systems, and micro-engines recharging battery packs for clean hybrid electric vehicles. Pressurized air is often needed to cool GFBs and to carry away heat conducted from a hot turbine in oil-free micro turbomachinery. Side end pressurization, however, demonstrates a profound effect on the rotordynamic performance of GFBs. This dissertation presents the first study that devotes considerable attention to the effect of side end pressurization on delaying the onset rotor speed of subsynchronous motions. GFB performance depends largely on the support elastic structure, i.e. a smooth foil on top of bump strips. The top foil on bump strips layers is modeled as a two dimensional (2D), finite element (FE) shell supported on axially distributed linear springs. The structural model is coupled to a unique model of the gas film governed by modified Reynolds equation with the evolution of gas flow circumferential velocity, a function of the side end pressure. Predicted direct stiffness and damping increase as the pressure raises, while the difference in cross-coupled stiffnesses, directly related to rotor-bearing system stability, decreases. Prediction also shows that side end pressurization delays the threshold speed of instability. Dynamic response measurements are conducted on a rigid rotor supported on GFBs. Rotor speed-up tests first demonstrate the beneficial effect of side end pressurization on delaying the onset speed of rotor subsynchronous motions. The test data are in agreement with predictions of threshold speed of instability and whirl frequency ratio, thus validating the model of GFBs with side end pressurization. Rotor speed coastdown tests at a low pressure of 0.35 bar evidence nearly uniform normalized rotor motion amplitudes and phase angles with small and moderately large imbalance masses, thus implying a linear rotor response behavior. A finite element rotordynamic model integrates the linearized GFB force coefficients to predict the synchronous responses of the test rotor. A comparison of predictions to test data demonstrates an excellent agreement and successfully validates the rotordynamic model.
6

An Investigation of Foil Thickness on Performance for Oil – Free Bearings

Knowles, Sean William 19 March 2009 (has links)
No description available.
7

Metal Mesh Foil Bearings: Prediction and Measurement for Static and Dynamic Performance Characteristics

Chirathadam, Thomas 14 March 2013 (has links)
Gas bearings in oil-free micro-turbomachinery for process gas applications and for power generation (< 400 kW) must offer adequate load capacity and thermal stability, reliable rotordynamic performance at high speeds and temperatures, low power losses and minimal maintenance costs. The metal mesh foil bearing (MMFB) is a promising foil bearing technology offering inexpensive manufacturing cost, large inherent material energy dissipation mechanism, and custom-tailored stiffness and damping properties. This dissertation presents predictions and measurements of the dynamic forced performance of various high speed and high temperature MMFBs. MMFB forced performance depends mainly on its elastic support structure, consisting of arcuate metal mesh pads and a smooth top foil. The analysis models the top foil as a 2D finite element (FE) shell supported uniformly by a metal mesh under-layer. The solution of the structural FE model coupled with a gas film model, governed by the Reynolds equation, delivers the pressure distribution over the top foil and thus the load reaction. A perturbation analysis further renders the dynamic stiffness and damping coefficients for the bearing. The static and dynamic performance predictions are validated against limited published experimental data. A one-to-one comparison of the static and dynamic forced performance characteristics of a MMFB against a Generation I bump foil bearing (BFB) of similar size, with a slenderness ratio L/D=1.04, showcases the comparative performance of MMFB against a commercially available gas foil bearing design. The measurements of rotor lift-off speed and drag friction at start-up and airborne conditions are conducted for rotor speeds up to 70 krpm and under identical specific loads (W/LD =0.06 to 0.26 bar). The dynamic force coefficients of the bearings are estimated, in a ‘floating bearing’ type test rig, while floating atop a journal spinning to speeds as high as 50 krpm and with controlled static loads (22 N) applied in the vertical direction. The parameter identification is conducted in the frequency range of 200-400 Hz first, and then up to 600 Hz using higher load capacity shakers. A finite element rotordynamic program (XLTRC2) models a hollow rotor and two MMFBs supporting it and predict the synchronous rotor response for known imbalances. The predictions agree well with the ambient temperature rotor response measurements. Extensive rotor response measurements and rotor and bearing temperature measurements, with a coil heater warming up to 200 ºC and placed inside the hollow rotor, reveal the importance of adequate thermal management. The database of high speed high temperature performance measurements and the development of a predictive tool will aid in the design and deployment of MMFBs in commercial high-speed turbomachinery. The work presented in the dissertation is a cornerstone for future analytical developments and further testing of practical MMFBs.
8

Experimental identification of structural force coefficients in a bump-type foil bearing

Breedlove, Anthony Wayne 02 June 2009 (has links)
This thesis presents further experimentation and modeling for bump-type gas foil bearings used in oil-free turbomachinery. The effect of shaft temperature on the measured structural force response of foil bearings is of importance for reliable high temperature applications. During actual operation with shaft rotation, the bearing structural parameters are coupled to the effects of a hydrodynamic gas film layer, thus determining the overall bearing load performance. A 38.17 mm inner diameter foil bearing, Generation II, is mounted on an affixed non-rotating hollow shaft with an outer diameter of 38.125 mm. A cartridge heater inserted into the shaft provides a controllable heat source. The clearance between the shaft and the foil bearing increases with increasing shaft temperatures (up to 188°C). A static load (ranging from 0 N to 133 N) is applied to the bearing housing, while measuring the resulting bearing displacement, which represents the compliant structure deflection. Static load versus displacement tests render the bearing static structural stiffness. As the shaft temperature increases, the static test results indicate that the bearing structural stiffness decreases by as much as 70% depending on the bearing orientation. A dynamic load test setup includes a rigid shaft support structure and a suspended electromagnetic shaker. Dynamic load (from 13 N to 31 N) test results show that the test foil bearing stiffness increases by as much as 50% with amplitude of dynamic load above a lightly loaded region, nearly doubles with frequency up to 200 Hz, and decreases by a third as shaft temperature increases. A stick slip phenomenon increases the bearing stiffness at higher frequencies for all the amplitudes of dynamic load tested. The test derived equivalent viscous damping is inversely proportional to amplitude of dynamic load, excitation frequency, and shaft temperature. Further, the estimated bearing dry friction coefficient decreases from 0.52 to 0.36 with amplitude of dynamic load and stays nearly constant as shaft temperature increases. Test results identify static and dynamic bearing parameters for increasing shaft temperature. These experimental results provide a benchmark for predictions from analytical models in current development and are essential to establish sound design practices of the compliant bearing structure.
9

Measurements of Drag Torque and Lift Off Speed and Identification of Stiffness and Damping in a Metal Mesh Foil Bearing

Chirathadam, Thomas A. 2009 December 1900 (has links)
Metal mesh foil bearings (MMFBs) are a promising low cost gas bearing technology for support of high speed oil-free microturbomachinery. Elimination of complex oil lubrication and sealing system by installing MMFBs in oil free rotating machinery offer distinctive advantages such as reduced system overall weight, enhanced reliability at high rotational speeds and extreme temperatures, and extended maintenance intervals compared to conventional turbo machines. MMFBs for oil-free turbomachinery must demonstrate adequate load capacity, reliable rotordynamic performance, and low frictional losses in a high temperature environment. The thesis presents the measurements of MMFB break-away torque, rotor lift off and touchdown speeds, temperature at increasing static load conditions, and identified stiffness and equivalent viscous damping coefficients. The experiments, conducted in a test rig driven by an automotive turbocharger turbine, demonstrate the airborne operation (hydrodynamic gas film) of the floating test MMFB with little frictional loses at increasing loads. The measured drag torque peaks when the rotor starts and stops, and drops significantly once the bearing is airborne. The estimated rotor speed for lift-off increases linearly with increasing applied loads. During continuous operation, the MMFB temperature measured at one end of the back surface of the top foil increases both with rotor speed and static load. Nonetheless, the temperature rise is only nominal ensuring reliable bearing performance. Application of a sacrificial layer of solid lubricant on the top foil surface aids to reduce the rotor break-away torque. The measurements give confidence on this simple bearing technology for ready application into oil-free turbomachinery. Impact loads delivered (with a soft tip) to the test bearing, while resting on the (stationary) drive shaft, evidence a system with large damping and a structural stiffness that increases with frequency (max. 200 Hz). The system equivalent viscous damping ratio decreases from ~ 0.7 to 0.2 as the frequency increases. In general, the viscous damping in a metal mesh structure is of structural type and inversely proportional to the frequency and amplitude of bearing motion relative to the shaft. Impact load tests, conducted while the shaft rotates at 50 krpm, show that the bearing direct stiffness is lower (~25% at 200 Hz) than the bearing structural stiffness identified from impact load tests without shaft rotation. However, the identified equivalent viscous damping coefficients from tests with and without shaft rotation are nearly identical. The orbits of bearing motion relative to the rotating shaft show subsynchronous motion amplitudes and also backward synchronous whirl. The subsynchronous vibration amplitudes are locked at a frequency, nearly identical to a rotor natural frequency. A backward synchronous whirl occurs while the rotor speed is between any two natural frequencies, arising due to bearing stiffness asymmetry.
10

Simulation and Modeling of the Hydrodynamic, Thermal, and Structural Behavior of Foil Thrust Bearings

Bruckner, Robert Jack 08 July 2004 (has links)
No description available.

Page generated in 0.0753 seconds