Spelling suggestions: "subject:"holds (deology)"" "subject:"holds (caveology)""
31 |
The effects of fault-induced stress anisotropy on fracturing, folding and sill emplacement : insights from the Bowie coal mines, southern Piceance basin, western Colorado /Robeck, Eric Dean, January 2005 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Geology, 2005. / Includes bibliographical references (p. 92-97).
|
32 |
Earthquakes to mountains : fault behavior of the San Andreas Fault and active tectonics of the Chinese Tian Shan /Scharer, Katherine Maxine, January 2005 (has links)
Thesis (Ph. D.)--University of Oregon, 2005. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 173-185). Also available for download via the World Wide Web; free to University of Oregon users.
|
33 |
A critical analysis using remote sensing and GIS techniques for spatial distribution and macro-morphological analyses of rockfalls in the Golden Gate Highlands National Park, South AfricaDe Lemos, Hugo Jose 30 January 2015 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of requirements for the degree of Master of Science. 11/30/2013. / A variety of mass movement and depositional geomorphic phenomena in the Golden Gate Highlands National Park have been described in the literature over the past few decades, yet notably, the prominent rockfalls remain understudied. The objective of the MSc study is to undertake detailed mapping of the GGHNP rockfalls, and in so doing ascertain a better understanding of their macro-morphologies, associated spatial-size dynamics and relationships to lithology, using both field-based and desktop image processing techniques.
Ground truthing, using the highest possible resolution achievable through differential GPS (DGPS) and field measurements with an accuracy of cm to mm, serves to quantify the accuracy of mapping rockfall phenomena through 0.5 m GSD colour aerial imagery. In addition, field measurements are used as inputs for feature extraction, such that rockfalls associated with the Clarens, Elliot and Molteno Formation Sandstones may be defined using object orientated classification techniques. The dimensions, orientation and absolute coordinates of rockfalls for select representative sites were captured using both field based and desktop techniques. The rockfall coordinates were taken at the midpoint of each measured rock using a DGPS, with an accuracy of ~ 2 cm on the x, y and z axis.
Object Based Image Analysis (OBIA) of Clarens and Molteno Fm. rockfalls was performed successfully using ground-truthed rockfall measurements to guide the creation of segmentation and classification rulesets. Multiple linear regression modelling can be used to model rockfall characteristics from ground-truthing with remotely sensed imagery, albeit to a very limited extent. Elliot Formation rockfalls could not be mapped and analysed mainly due to resolution limitations. Uni- and bi-variate statistics show promise in interpreting rockfall distribution and weighting with environmental variables derived from a DEM and geological vector.
Point density analyses found that for the entire GGHNP ~2 and ~4 rockfalls are found per Km² of Clarens and Molteno Formation rockfall areas
|
34 |
Folding of stratigraphic layers in ice domes /Jacobson, Herbert Paul. January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Vita. Includes bibliographical references (p. 104-108).
|
35 |
Late-orogenic, mantle-derived, bimodal magmatism in the southern Adelaide Foldbelt, South Australia / by Simon P. Turner.Turner, Simon P. January 1991 (has links)
Copies of author's previously published articles inserted. / Bibliography : leaves 179-196. / v, 196, [43] leaves : ill. (some col.), maps ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Late-orogenic magmas are common to many foldbelts, suggesting a causal link between this thermal pulse and the cessation of deformation. An investigation of such a late-orgenic magnetic suite is made in the southern Adelaide Foldbelt. The suite is biomodal with mafic dykes and plutons accompanied by high-silica granites and rhyolites. It is argued that these mafic and felsic intrusives are both thermally and compositionally related. / Thesis (Ph.D.)--University of Adelaide, Dept. of Geology and Geophysics, 1992
|
36 |
Structural-metamorphic studies of distinct fold types related to distinct tectono-metamorphic events in the central zone of the Limpopo Complex, South AfricaVan Kal, Shaun Michael 28 January 2009 (has links)
M.Sc. / The Central Zone of the Limpopo Complex displays two major structural features: the roughly east-west oriented Tshipise Straightening Zone Paleoproterozoic in age and a “Cross Folded Zone” to the north of the Straightening Zone comprising large-scale sheath and cross folds suggested to have developed during a Late- Archaean high grade tectono-metamorphic event. This study presents and discusses structural-metamorphic data showing that two closely associated folds (Ga-Tshanzi and Campbell) in the eastern part of the Cross Folded Zone near Musina, record different structural and metamorphic histories that may be applied to the evolution of the entire Central Zone of the Limpopo Complex. The Ga-Tshanzi structure has an ovate-shaped closed outcrop pattern approximately 4km long, and 3km wide with the long axis of the fold pattern oriented in a westerly direction. The fold geometry, characterized by a central fold axis that plunges steeply to the SSW, is very similar to other closed folds in the Central Zone previously interpreted as sheath folds. The Ga-Tshanzi fold deforms rocks of the Beit Bridge Complex (calc-silicate, metaquartzite, metapelite and magnetite quartzite and quartzofeldspathic Singelele Gneiss), and members of the Messina Layered Suite. The ovate structure is characterised by a gneissic fabric comprising peak metamorphic mineral assemblages. This regional gneissic fabric that occurs throughout the Central Zone also defines the shape of the neighbouring Campbell fold. Mineral lineations and fold hinges in the Ga-Tshanzi fold mainly present within metaquartzites and calc-silicates, plunge steeply to the southwest, parallel to its central fold axis indicating a NNE-SSW transport direction during fold formation. A decompression-cooling P-T path calculated for metapelitic gneisses from the Ga-Tshanzi fold shows that the closed fold developed under high-grade, deep crustal conditions. Peak P-T conditions of 7.5kbar/799ºC were followed by decompression and cooling down to 5.23kbar/605ºC. Water activity during this event was low, ranging from 0.122 at peak conditions, and decreasing to 0.037 at the minimum calculated conditions. The Ga-Tshanzi closed fold and the closely associated Campbell cross fold were thus formed at deep crustal levels and partially exhumed along a similar decompression-cooling P-T path to mid-crustal levels during the early orogenic event. The Campbell fold, described as a cross fold in the literature, is approximately 15km long and has a V shaped outcrop pattern that tapers from 12km in the southeast to 2 km in the northwest. This fold is developed in lithologies similar to those of the Ga-Tshanzi fold as well as in Sand River Gneisses. It has a near isoclinal fold geometry with both limbs dipping towards the southwest and a fold axis that plunges moderately to the west-southwest. This fold, that is interpreted to have developed during the same deformational event as the Ga-Tshansi structure has, however, subsequently been affected at mid- to upper crustal levels by shear movement along the Tshipise Straightening Zone displaying widespread development of younger planar and linear structural features. Planar features include north-south-trending high temperature shear zones that crosscut the regional fabric and flexural slip planes particularly evident in quartzites. Linear features from the Campbell fold that are mainly developed in younger shear and flexural slip planes, indicate, in contrast to the Ga-Tshanzi fold, an ENE-WSW directed crustal movement that is in accordance with the sense of movement suggested for the Tshipise Straightening Zone. The calculated decompression-cooling P-T path for sheared metapelitic gneisses from discrete high temperature shear zones deforming rocks of the Campbell cross fold shows that this superimposed shear deformational event occurred under peak P-T conditions of 4.98kbar/681ºC, followed by decompression and cooling down to 3.61kbar/585ºC. Water activity during this shear event was high, ranging from 0.217 at peak conditions and decreases to 0.117 at minimum calculated conditions. Structural and metamorphic data for the two folded areas thus indicate two distinct tectono-metamorphic events: (i) a late Archaean peak metamorphic and deformational event responsible for the formation of the Ga-Tshanzi fold, and similar folds throughout the Central Zone including the Campbell cross fold that was accompanied by steep NNE-SSW transport of crustal material, and (ii) a shear deformational event linked to the Paleoproterozoic Tshipise Straightening Zone that partially obliterated the early structural and metamorphic history of the Campbell fold during mid to upper crustal conditions during relatively shallow ENE-WSW directed movement of crustal material. The fact that this superimposed event had no apparent metamorphic effect on the studied metapelitic rocks of the closely associated Ga-Tshanzi closed fold, suggests that shearing was constrained to discrete north-south orientated zones.
|
37 |
Formation of major fold types during distinct geological events in the central zone of the Limpopo Belt, South Africa: new structural, metamorphic and geochronologicBoshoff, Rene 27 January 2009 (has links)
M.Sc. / The Limpopo Complex (LC) of southern Africa is one of the best-studied Precambrian granulite facies terrains in the world, yet workers still disagree on fundamental aspects of the geological evolution of this complexly deformed high-grade terrain. Most workers agree that the two marginal zones were exhumed in the late-Archaean, but disagree on the timing of major tectono-metamorphic events that affected the Central Zone (CZ) of Limpopo Belt, and the mechanism/s of its formation. There are currently two main schools of thought: The first school regards the LC as a late-Archaean orogenic zone that resulted from a north-south collision of the Zimbabwe and Kaapvaal cratons. Granitic plutons throughout the entire LC are considered to be accurate time-markers for this orogeny. The second school suggests that the CZ evolved as a result of a major Paleoproterozoic tectono-metamorphic event based mainly on the interpretation of metamorphic mineral ages. The present study focuses on two aims, namely (i) to provide a synthesis of published data as a basis to understand the ongoing age controversy concerning the evolution of the CZ, and (ii) to show that specific fold types in the CZ can be related to either the late-Archaean or the Paleoproterozoic event. New age, structural, metamorphic, and petrographic data are presented to show that (i) major sheath folds reflect the peak tectono-metamorphic event that affected the CZ in the late-Archaean, while (ii) major cross folds developed as a result of a transpressive event in the Paleoproterozoic. The age of formation of the Avoca sheath fold located about 40 km west of Alldays is accurately constrained by the age of emplacement of different structural varieties of precursors to the Singelele Gneiss: penetratively deformed syn- to late-tectonic Singelele gneisses with a zircon SHRIMP age of 2651 ± 8 Ma, date the time of formation of the sheath fold that is characterized by a single population of linear elements that define the central fold axis. The Avoca sheath fold documents top-to-the-NNE movement of material during the exhumation of the high-grade CZ rocks. Weakly foliated late-tectonic L-tectonites with a zircon SHRIMP age of 2626.8 ± 5.4 Ma, outcrop near the centre of the sheath fold, and provide a minimum age for the shear deformation event. An almost undeformed (post-tectonic) variety of the Singelele Gneiss was emplaced after the shear event. A detailed metamorphic study of metapelitic gneisses from the large Baklykraal cross fold, located about 20 km east of the Avoca sheath fold, documents a single decompression-cooling (DC) P-T path for the evolution of this structure. Three studied metapelitic samples characterized by a single generation of garnet provide a Pb-Pb age of 2023 ± 11 Ma, that accurately constrain the time of formation of this major fold to the Paleoproterozoic. A metapelitic sample characterized by two generations of garnet provide a slightly older Pb-Pb age of 2173 ± 79 Ma, that is interpreted to also reflect the late-Archaean event. The Baklykraal cross fold is characterized by two populations of linear elements: the one population defines the shallow N-S oriented fold axes, while the second population is associated with top-to-the-NNE movement of material during exhumation, resulting in folds with a nappe-like geometry. A DC P-T path for the Campbell cross fold (Van Kal, 2004) located just west of Musina, suggests that cross folds developed under significantly lower P-T conditions than is the case with sheath folds, providing an explanation for the lack of significant anatexis associated with the Paleoproterozoic event. The late-Archaean orogeny in contrast, was accompanied by widespread anatexis during a major magmatic event that is characterized by an abnormal high radiogenic signature. This study, for the first time, provides evidence that link specific fold types, and thus deformational events, to different tectono-metamorphic events. The main conclusion is that the CZ was exhumed as the result of two distinct orogenies, one in the late-Archaean, and the other in the Paleoproterozoic.
|
38 |
A structural study of Witteberg group rocks (Cape supergroup) in the Cape fold belt, Steytlerville district, Eastern CapeBrunsdon, Gideon January 2006 (has links)
A structural study of Witteberg Group Rocks was conducted along the Soutkloof River, approximately 14 km east of Steytlerville, Eastern Cape Province of South Africa. Here a north to south geotraverse was studied in an attempt at unravelling the structural geology of the rocks belonging to the Upper Devonian to Lower Carboniferous Witteberg Group (Upper Cape Supergroup). These rocks are mostly arenaceous and include quartzite, sandstone, siltstone and shale which have been folded, faulted and metamorphosed. Thrust, normal and strike-slip faulting occur in the area. Shallow south-dipping low-angle thrust fault planes are displaced by steep south-dipping thrust planes and subordinate north-dipping backthrusts. Displacement along thrust planes is predominantly northwards. Steeply dipping thrust fault planes are often reactivated as east-west striking normal faults. Strike-slip faulting postdates all observed structural features and displaces normal and thrust fault planes. Open to tight folds are present and are mostly northvergent and often steepened or truncated by steep south-dipping thrust fault planes. South-vergent folds are related to backthrusting and post-fold faulting. The study has revealed that the current geological map and the local stratigraphy were compiled without recognising major structural features such as thrust, normal and strike-slip faulting and their (the map and currently accepted stratigraphy) validity are therefore questioned. The presence of extensive faulting suggests that the conventional stratigraphic interpretation of the Witteberg Group should be revised.
|
39 |
A study of the structural geology of the Witteberg Group and lowermost Karoo Supergroup, Darlington Dam, Jansenville District, Eastern CapeGoossens, Angelique Emily Maria January 2003 (has links)
A number of outcrops of the Witteberg Group and lowermost Karoo Supergroup rocks were studied in the area south of the Darlington Dam, Jansenville District, with the aim of documenting structural characteristics of the area. All lithologies are folded with fold styles varying from gentle to near isoclinal (based on interlimb angle). Fold axes are either sub-horizontal or plunging at gentle to moderate angles whereas axial planes dip gently to vertically (predominantly steep to sub-vertical). Folds verge predominantly towards the north but where southward verging they are associated with faulting or strongly folded areas. Folds plunge gently to the east-southeast and west-northwest. The area consists of a large anticlinorium with both first and second order folds occurring. Eastwest striking faults occur in the study area and are classified as normal, reverse and thrust faults. A study of the joint sets shows that there are four dominant joint directions, namely 18o, 33o, 97o and 107o (in order from least to most important). An interpretation of the tectonic history is presented in which the relationships between faults and folds show that faults formed during and after folding. Folding, and reverse and thrust faulting, occurred during the compressional events that formed the Cape Fold Belt, whereas the normal faults formed during the relaxation of these compressional forces or during the break-up of Gondwana.
|
40 |
Structural evolution of the Warwick Hills, Marathon Basin, West TexasColey, Katharine Lancaster, 1956- 14 April 2011 (has links)
A detailed structural analysis was conducted of the Warwick Hills at the northeast tip of the doubly-plunging Dagger Flat anticlinorium, Marathon Basin, west Texas. Field work delineated a folded duplex structure composed of three horses. Thrust transport was towards the northwest and resulted in a hinterland-dipping duplex. Initial thrusting In the Warwick Hills shortened the area by 2.2:1 (54%). Post-thrusting, the duplex underwent nearly isoclinal folding creating two anticlines and a syncline, second-order folds to the Dagger Flat anticlinoium. Folding combined with thrusting brought the total shortening of the rock package to 6.5:1 (85%). Earlier estimates gave a shortening for the Warwick Hills of 3:1. Finally, the folded duplex was extended by oblique tear faulting that offset the folded thrusts accommodating extension of the major folds in a northeast direction. These tear faults occurred post-plunging of the folds and were the last deformational movements that affected the Warwick Hills. The Ordovician Maravillas and Devonian Caballos Formations acted in the Warwick Hills as a structurally competent couplet. Addition or subtraction of this couplet, or units in this couplet, controlled the location of the major and minor thrusts, the style and shape of folds, and the location of the fold hinges. Bounding the couplet are incompetent shales of the Ordovician Woods Hollow and the Mississippian Tesnus Formations. Thrusts in the Warwick Hills duplex have a basal décollement in the Woods Hollow shale and ramp up through the Maravillas/Caballos couplet with an upper décollement in the Tesnus shale. The entire duplex was primarily folded by flexural slip (i.e. concentric folds) as evidenced by slickensides oriented parallel to bedding and perpendicular to fold axes, the constant thickness of the competent layers and the change in fold shape with depth. Fold wavelength, as determined from the couplet in the lowest thrust sheet, averages ~1,300 m and the average fold axis for the Warwick Hills, as determined stereographically, plunges ~54° N90°E. Shale in the Woods Hollow and Tesnus Formations bounding the couplet, flowed passively during folding into the cavities that were created by the bending of the more competent units. Lower and upper boundaries of disharmonic folding developed in the Woods Hollow and Tesnus Formations respectively. Unique to this area when compared to the rest of the anticlinorium are the presence of tightly folded thrusts and steep east-trending fold axes. The anticlinorium plunges in the Warwick Hills because it drapes off a down-to-the-northeast basement fault. Folds were "dragged" or diverted to the east during thrusting of the duplex over this transversely-oriented paleotopographic fault scarp, or were diverted subsequent to thrusting of the duplex by strike-slip movements at depth along the basement fault. / text
|
Page generated in 0.0311 seconds