• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sobre fluxos de Reeb tri-dimensionais: existência implicada de órbitas periódicas e uma caracterização dinâmica do toro sólido. / On three-dimensional Reeb flows: implied existence of periodic orbits and a dynamical characterization of the solid torus

Silva, André Vanderlinde da 29 October 2014 (has links)
Neste trabalho, estudamos a dinâmica de Reeb associada a uma forma de contato $\\lambda$ definida numa 3-variedade compacta e conexa M. Assumimos que $\\lambda$ é tight e a primeira classe de Chern da estrutura de contato $\\xi=\\ker\\lambda$ se anula sobre $\\pi_2(M)$. No nosso primeiro resultado, supomos que M é fechada e existe uma órbita fechada L do fluxo de Reeb que é um p-nó trivial com número de auto-enlaçamento $-1/p$. Supomos, além disso, que o número de rotação transversal da p-ésima iterada de L é estritamente menor do que 1. Nestas condições, provamos que existe uma órbita fechada (de Reeb) contrátil geometricamente distinta de L e não-enlaçada em L cujo número de rotação transversal é 1. Apresentamos também uma versão deste resultado para o caso em que M é uma 3-variedade cujo bordo é difeomorfo a um toro e invariante pelo fluxo de Reeb e não existem órbitas fechadas contidas no bordo. Nosso segundo resultado é uma caracterização dinâmica do toro sólido. Seja $\\lambda$ uma forma de contato não-degenerada definida em uma 3-variedade M cujo bordo é difeomorfo a um toro e invariante pelo fluxo de Reeb. Se o fluxo de Reeb satisfaz certas hipóteses de torção sobre o bordo, então ou existe uma órbita fechada contrátil com índice de Conley-Zehnder 2 ou M é folheada por discos transversais ao campo de Reeb. Neste último caso, M é difeomorfa a um toro sólido e existe uma órbita fechada não-contrátil em M que é ponto fixo da aplicação de retorno induzida pela folheação. / In this work, we study the Reeb dynamics associated to a tight contact form $\\lambda$ defined on a compact, connected 3-manifold M. Suppose that the first Chern class of $\\xi=\\ker\\lambda$ vanish on $\\pi_2(M)$. In our first result, we assume that M is closed and there exists a closed Reeb orbit L which is a p-unknotted, has self-linking number $-1/p$ and the transverse rotation number of the p-th iterate of L is less than 1. Under these conditions, we verify that there exists a contractible closed Reeb orbit which is geometrically distinct from L and not linked to L with transverse rotation number 1. We also prove a version of this result when M is a compact 3-manifold M whose boundary is diffeomorphic to a torus and invariant by the flow and, moreover, there does not exist closed Reeb orbits on the boundary. Our second result is a dynamical characterization of the solid torus. We assume that $\\lambda$ is a contact form on a compact 3-manifold M whose boundary is diffeomorphic to a torus. Under the hypothesis of $\\lambda$ being non-degenerate, if the flow is tangent to $\\partial M$ and satisfies some twist conditions on the boundary, then either there exists a contractible closed Reeb orbit which has Conley-Zehnder index 2 or M is foliated by disks transverse to the Reeb flow. In this last case, we see that M is diffeomorphic to a solid torus and there exists a non-contractible closed Reeb orbit M which is a fixed point of the return map induced by the foliation.
2

Sobre fluxos de Reeb tri-dimensionais: existência implicada de órbitas periódicas e uma caracterização dinâmica do toro sólido. / On three-dimensional Reeb flows: implied existence of periodic orbits and a dynamical characterization of the solid torus

André Vanderlinde da Silva 29 October 2014 (has links)
Neste trabalho, estudamos a dinâmica de Reeb associada a uma forma de contato $\\lambda$ definida numa 3-variedade compacta e conexa M. Assumimos que $\\lambda$ é tight e a primeira classe de Chern da estrutura de contato $\\xi=\\ker\\lambda$ se anula sobre $\\pi_2(M)$. No nosso primeiro resultado, supomos que M é fechada e existe uma órbita fechada L do fluxo de Reeb que é um p-nó trivial com número de auto-enlaçamento $-1/p$. Supomos, além disso, que o número de rotação transversal da p-ésima iterada de L é estritamente menor do que 1. Nestas condições, provamos que existe uma órbita fechada (de Reeb) contrátil geometricamente distinta de L e não-enlaçada em L cujo número de rotação transversal é 1. Apresentamos também uma versão deste resultado para o caso em que M é uma 3-variedade cujo bordo é difeomorfo a um toro e invariante pelo fluxo de Reeb e não existem órbitas fechadas contidas no bordo. Nosso segundo resultado é uma caracterização dinâmica do toro sólido. Seja $\\lambda$ uma forma de contato não-degenerada definida em uma 3-variedade M cujo bordo é difeomorfo a um toro e invariante pelo fluxo de Reeb. Se o fluxo de Reeb satisfaz certas hipóteses de torção sobre o bordo, então ou existe uma órbita fechada contrátil com índice de Conley-Zehnder 2 ou M é folheada por discos transversais ao campo de Reeb. Neste último caso, M é difeomorfa a um toro sólido e existe uma órbita fechada não-contrátil em M que é ponto fixo da aplicação de retorno induzida pela folheação. / In this work, we study the Reeb dynamics associated to a tight contact form $\\lambda$ defined on a compact, connected 3-manifold M. Suppose that the first Chern class of $\\xi=\\ker\\lambda$ vanish on $\\pi_2(M)$. In our first result, we assume that M is closed and there exists a closed Reeb orbit L which is a p-unknotted, has self-linking number $-1/p$ and the transverse rotation number of the p-th iterate of L is less than 1. Under these conditions, we verify that there exists a contractible closed Reeb orbit which is geometrically distinct from L and not linked to L with transverse rotation number 1. We also prove a version of this result when M is a compact 3-manifold M whose boundary is diffeomorphic to a torus and invariant by the flow and, moreover, there does not exist closed Reeb orbits on the boundary. Our second result is a dynamical characterization of the solid torus. We assume that $\\lambda$ is a contact form on a compact 3-manifold M whose boundary is diffeomorphic to a torus. Under the hypothesis of $\\lambda$ being non-degenerate, if the flow is tangent to $\\partial M$ and satisfies some twist conditions on the boundary, then either there exists a contractible closed Reeb orbit which has Conley-Zehnder index 2 or M is foliated by disks transverse to the Reeb flow. In this last case, we see that M is diffeomorphic to a solid torus and there exists a non-contractible closed Reeb orbit M which is a fixed point of the return map induced by the foliation.

Page generated in 0.096 seconds