Spelling suggestions: "subject:"foliated cohomology"" "subject:"spoliated cohomology""
1 |
Cohomologie de Dolbeault feuilletée de certaines laminations complexes / Cohomology of some complex laminationsBen Charrada, Rochdi 29 May 2013 (has links)
Dans cette thèse, nous nous s’intéressons au calcul des groupes de cohomologie de Dolbeault feuilletée H0∗L (M) de certaines laminations complexes. Ceci revient à résoudre le problème du ∂ le long des feuilles ∂Lα = ω. (Ici M est un espace métrique ou une variété dans le cas où L est un feuilletage F.) Trois situations ont été étudiées de manière explicite.1. Soit M = Ω un ouvert de C × R muni du feuilletage F dont les feuilles sont les sections Ωt = {z ∈ C : (z, t) ∈ Ω} ; on dira que F est le feuilletage canonique de Ω. Sous certaines conditions sur Ω et de croissance sur la forme feuilletée ω, nous montrons que l’´équation ∂Fα = ω a une solution.2. On se donne une suite (αn)n≥1 strictement croissante avec α1 = −1 et convergeant vers 1. Dans C × R on considère les points A = (0, 1) et An = (0, αn) pour n ≥ 1. Pour tout n ≥ 1, soient Sn la sphère de C × R de diamètre le segment [AnA] et E la réunion de toutes ces sphères. Alors E est un sous-espace métrique compact et connexe de C × R. Soit γ : E −→ E l’homéomorphisme défini par γ(w,u) = (ρn(w),u) lorsque (w, u) ∈ Sn où ρn est la rotation dans C d’angle 2πn. La suspension de γ donne une lamination complexe L dont les feuilles sont des surfaces de Riemann toutes équivalentes à C*. Pour cet exemple, nous montrons que l’espace vectoriel H01(L) est nul.3. On considère la variété M = C × Rn \ {(0, 0)} (les coordonnées d’un point seront notées (z,t)) qu’on munit du feuilletage complexe F défini par le système différentiel dt1 = • • • = dn = 0. Le difféomorphisme γ : (z, t) ∈ Mf7−→ (λz, λt) ∈ M (avec 0 < λ < 1) agit sur M de façon libre et propre ; en plus, c’est un automorphisme de F ; F induit alors sur le quotient M = M/γ (qui est difféomorphe `à Sn+1 × S1) un feuilletage complexe F par surfaces de Riemann. Nous montrons que les espaces vectoriels de cohomologie de Dolbeault feuilletée H00 F (M) et H01F (M) sont isomorphes à C. / In this thesis, we are interested in computing the foliated Dolbeault cohomology groups H0∗L (M) for some complex laminations. This amounts to solving the problem of the ∂ along the leaves ∂Lα = ω. (Here M is a metric space or a differentiable manifold if L is a foliation F.) Three situations were considered explicitly.1. Let M = Ω be an open set of C×R equipped with the foliation F whose leaves are the sections Ωt = {z ∈ C(z, t) ∈ Ω}; we say that F is the canonical foliation of Ω. Under certain conditions on Ω and growth conditions on the foliated form ω, we show that the equation ∂Fα = ω has a solution.2. Let (αn)n≥1 be a sequence of real numbers, strictly increasing with α1 = −1 and converging to 1. In C × R we consider the points A = (0, 1) and An = (0, αn) for n ≥ 1. For all n ≥ 1, let Sn be the sphere of C × R with a diameter segment [AnA] and E the union of all these spheres. Then E is a compact and connected subset of C × R. Let γ : E −→ E the homeomorphism defined by γ(w,u) = (ρn(w),u), where (w,u) ∈ Sn and ρn is the rotation in C with angle 2πn. The suspension of γ gives rise to a complex lamination L whose leaves are all equivalent Riemann surfaces isomorphic to C∗. For This example we show that the vector space H01 (L) is zero.3. Consider the manifold M = C × Rn \ {(0, 0)} (the coordinates of a point are denoted (z,t)) endowed with the complex foliation F defined by the differential system dt1 = • • • = dn = 0. The diffeomorphism γ : (z, t) ∈ M −→ (λz, λt) ∈ M (where 0 < λ < 1) acts on M freely and properly ; moreover it is an automorphism of the complex foliation F ; then F induces on the quotient M = M/γ (which is diffeomorphic to S n+1 × S1) a complex foliation F by Riemann surfaces. All leaves are isomorphic to C except one of them which is an elliptic curve. We show that the vector spaces H00 F (M) and H01F (M) of foliated Dolbeault cohomology are isomorphic to C.
|
Page generated in 0.0689 seconds