Spelling suggestions: "subject:"enfonction dde covariance"" "subject:"enfonction dee covariance""
1 |
Estimation paramétrique de la fonction de covariance dans le modèle de Krigeage par processus Gaussiens. Application à la quantification des incertitudes en simulation numériqueBachoc, François 03 October 2013 (has links) (PDF)
L'estimation paramétrique de la fonction de covariance d'un processus Gaussien est étudiée, dans le cadre du modèle de Krigeage. Les estimateurs par Maximum de Vraisemblance et Validation Croisée sont considérés. Le cas correctement spécifié, dans lequel la fonction de covariance du processus Gaussien appartient à l'ensemble paramétrique de fonctions de covariance, est d'abord traité dans un cadre asymptotique par expansion. Le plan d'expériences considéré est une grille régulière multidimensionnelle perturbée aléatoirement. Un résultat de consistance et de normalité asymptotique est montré pour les deux estimateurs. Il est ensuite mis en évidence que des amplitudes de perturbation importantes sont toujours préférables pour l'estimation par Maximum de Vraisemblance. Le cas incorrectement spécifié, dans lequel l'ensemble paramétrique utilisé pour l'estimation ne contient pas la fonction de covariance du processus Gaussien, est ensuite étudié. Il est montré que la Validation Croisée est alors plus robuste que le Maximum de Vraisemblance. Enfin, deux applications du modèle de Krigeage par processus Gaussiens sont effectuées sur des données industrielles. Pour un problème de validation du modèle de frottement pariétal du code de thermohydraulique FLICA 4, en présence de résultats expérimentaux, il est montré que la modélisation par processus Gaussiens de l'erreur de modèle du code FLICA 4 permet d'améliorer considérablement ses prédictions. Enfin, pour un problème de métamodélisation du code de thermomécanique GERMINAL, l'intérêt du modèle de Krigeage par processus Gaussiens, par rapport à des méthodes par réseaux de neurones, est montré
|
2 |
Générateur stochastique de temps multisite basé sur un champ gaussien multivarié / Spatial stochastic weather generator based on a multivariate gaussian random fieldBourotte, Marc 17 June 2016 (has links)
Les générateurs stochastiques de temps sont des modèles numériques capables de générer des séquences de données climatiques de longueur souhaitée avec des propriétés statistiques similaires aux données observées. Ces modèles sont de plus en plus utilisés en sciences du climat, hydrologie, agronomie. Cependant, peu de générateurs permettent de simuler plusieurs variables, dont les précipitations, en différents sites d’une région. Dans cette thèse, nous proposons un modèle original de générateur stochastique basé sur un champ gaussien multivarié spatio-temporel. Un premier travail méthodologique a été nécessaire pour développer un modèle de covariance croisée entièrement non séparable adapté à la nature spatio-temporelle multivariée des données étudiées. Cette covariance croisée est une généralisation au cas multivarié du modèle non séparable spatio-temporel de Gneiting dans le cas de la famille de Matérn. La démonstration de la validité du modèle et l’estimation de ses paramètres par maximum de vraisemblance par paires pondérées sont présentées. Une application sur des données climatiques démontre l’intérêt de ce nouveau modèle vis-à-vis des modèles existants. Le champ gaussien multivarié permet la modélisation des résidus des variables climatiques (hors précipitation). Les résidus sont obtenus après normalisation des variables par des moyennes et écarts-types saisonniers, eux-mêmes modélisés par des fonctions sinusoïdales. L’intégration des précipitations dans le générateur stochastique nécessite la transformation d’une composante du champ gaussien par une fonction d’anamorphose. Cette fonction d’anamorphose permet de gérer à la fois l’occurrence et l’intensité des précipitations. La composante correspondante du champ gaussien correspond ainsi à un potentiel de pluie, corrélé aux autres variables par la fonction de covariance croisée développée dans cette thèse. Notre générateur stochastique de temps a été testé sur un ensemble de 18 stations réparties en zone à climat méditerranéen (ou proche) en France. La simulation conditionnelle et non conditionnelle de variables climatiques journalières (températures minimales et maximales, vitesse moyenne du vent, rayonnement solaire et précipitation) pour ces 18 stations soulignent les bons résultats de notre modèle pour un certain nombre de statistiques / Stochastic weather generators are numerical models able to simulate sequences of weather data with similar statistical properties than observed data. However, few of them are able to simulate several variables (with precipitation) at different sites from one region. In this thesis, we propose an original model of stochastic generator based on a spatio-temporal multivariate Gaussian random field. A first methodological work was needed to develop a completely non separable cross-covariance function suitable for the spatio-temporal multivariate nature of studied data. This cross-covariance function is a generalization to the multivariate case of spatio-temporal non-separable Gneiting covariance in the case of the family of Matérn. The proof of the validity of the model and the estimation of its parameters by weighted pairwise maximum likelihood are presented. An application on weather data shows the interest of this new model compared with existing models. The multivariate Gaussian random field allows the modeling of weather variables residuals (excluding precipitation). Residuals are obtained after normalization of variables by seasonal means and standard deviations, themselves modeled by sinusoidal functions. The integration of precipitation in the stochastic generator requires the transformation of a component of the Gaussian random field by an anamorphosis function. This anamorphosis function can manage both the occurrence and intensity of precipitation. The corresponding component of the Gaussian random field corresponds to a rain potential, correlated with other variables by the cross-covariance function developed in this thesis. Our stochastic weather generator was tested on a set of 18 stations distributed over the Mediterranean area (or close) in France. The conditional and non-conditional simulation of daily weather variables (maximum and minimum temperature, average wind speed, solar radiation and precipitation) for these 18 stations show good result for a number of statistics.
|
3 |
Estimation de synchrones de consommation électrique par sondage et prise en compte d'information auxiliaireLardin, Pauline 26 November 2012 (has links) (PDF)
Dans cette thèse, nous nous intéressons à l'estimation de la synchrone de consommation électrique (courbe moyenne). Etant donné que les variables étudiées sont fonctionnelles et que les capacités de stockage sont limitées et les coûts de transmission élevés, nous nous sommes intéressés à des méthodes d'estimation par sondage, alternatives intéressantes aux techniques de compression du signal. Nous étendons au cadre fonctionnel des méthodes d'estimation qui prennent en compte l'information auxiliaire disponible afin d'améliorer la précision de l'estimateur de Horvitz-Thompson de la courbe moyenne de consommation électrique. La première méthode fait intervenir l'information auxiliaire au niveau de l'estimation, la courbe moyenne est estimée à l'aide d'un estimateur basé sur un modèle de régression fonctionnelle. La deuxième l'utilise au niveau du plan de sondage, nous utilisons un plan à probabilités inégales à forte entropie puis l'estimateur de Horvitz-Thompson fonctionnel. Une estimation de la fonction de covariance est donnée par l'extension au cadre fonctionnel de l'approximation de la covariance donnée par Hájek. Nous justifions de manière rigoureuse leur utilisation par une étude asymptotique. Pour chacune de ces méthodes, nous donnons, sous de faibles hypothèses sur les probabilités d'inclusion et sur la régularité des trajectoires, les propriétés de convergence de l'estimateur de la courbe moyenne ainsi que de sa fonction de covariance. Nous établissons également un théorème central limite fonctionnel. Afin de contrôler la qualité de nos estimateurs, nous comparons deux méthodes de construction de bande de confiance sur un jeu de données de courbes de charge réelles. La première repose sur la simulation de processus gaussiens. Une justification asymptotique de cette méthode sera donnée pour chacun des estimateurs proposés. La deuxième utilise des techniques de bootstrap qui ont été adaptées afin de tenir compte du caractère fonctionnel des données
|
4 |
Estimation de synchrones de consommation électrique par sondage et prise en compte d'information auxiliaire / Estimate the mean electricity consumption curve by survey and take auxiliary information into accountLardin, Pauline 26 November 2012 (has links)
Dans cette thèse, nous nous intéressons à l'estimation de la synchrone de consommation électrique (courbe moyenne). Etant donné que les variables étudiées sont fonctionnelles et que les capacités de stockage sont limitées et les coûts de transmission élevés, nous nous sommes intéressés à des méthodes d'estimation par sondage, alternatives intéressantes aux techniques de compression du signal. Nous étendons au cadre fonctionnel des méthodes d'estimation qui prennent en compte l'information auxiliaire disponible afin d'améliorer la précision de l'estimateur de Horvitz-Thompson de la courbe moyenne de consommation électrique. La première méthode fait intervenir l'information auxiliaire au niveau de l'estimation, la courbe moyenne est estimée à l'aide d'un estimateur basé sur un modèle de régression fonctionnelle. La deuxième l'utilise au niveau du plan de sondage, nous utilisons un plan à probabilités inégales à forte entropie puis l'estimateur de Horvitz-Thompson fonctionnel. Une estimation de la fonction de covariance est donnée par l'extension au cadre fonctionnel de l'approximation de la covariance donnée par Hájek. Nous justifions de manière rigoureuse leur utilisation par une étude asymptotique. Pour chacune de ces méthodes, nous donnons, sous de faibles hypothèses sur les probabilités d'inclusion et sur la régularité des trajectoires, les propriétés de convergence de l'estimateur de la courbe moyenne ainsi que de sa fonction de covariance. Nous établissons également un théorème central limite fonctionnel. Afin de contrôler la qualité de nos estimateurs, nous comparons deux méthodes de construction de bande de confiance sur un jeu de données de courbes de charge réelles. La première repose sur la simulation de processus gaussiens. Une justification asymptotique de cette méthode sera donnée pour chacun des estimateurs proposés. La deuxième utilise des techniques de bootstrap qui ont été adaptées afin de tenir compte du caractère fonctionnel des données / In this thesis, we are interested in estimating the mean electricity consumption curve. Since the study variable is functional and storage capacities are limited or transmission cost are high survey sampling techniques are interesting alternatives to signal compression techniques. We extend, in this functional framework, estimation methods that take into account available auxiliary information and that can improve the accuracy of the Horvitz-Thompson estimator of the mean trajectory. The first approach uses the auxiliary information at the estimation stage, the mean curve is estimated using model-assisted estimators with functional linear regression models. The second method involves the auxiliary information at the sampling stage, considering πps (unequal probability) sampling designs and the functional Horvitz-Thompson estimator. Under conditions on the entropy of the sampling design the covariance function of the Horvitz-Thompson estimator can be estimated with the Hájek approximation extended to the functional framework. For each method, we show, under weak hypotheses on the sampling design and the regularity of the trajectories, some asymptotic properties of the estimator of the mean curve and of its covariance function. We also establish a functional central limit theorem.Next, we compare two methods that can be used to build confidence bands. The first one is based on simulations of Gaussian processes and is assessed rigorously. The second one uses bootstrap techniques in a finite population framework which have been adapted to take into account the functional nature of the data
|
Page generated in 0.0949 seconds