Spelling suggestions: "subject:"modelassisted estimator"" "subject:"powerassisted estimator""
1 |
Pénalisation et réduction de la dimension des variables auxiliaires en théorie des sondages / Penalization and data reduction of auxiliary variables in survey samplingShehzad, Muhammad Ahmed 12 October 2012 (has links)
Les enquêtes par sondage sont utiles pour estimer des caractéristiques d'une populationtelles que le total ou la moyenne. Cette thèse s'intéresse à l'étude detechniques permettant de prendre en compte un grand nombre de variables auxiliairespour l'estimation d'un total.Le premier chapitre rappelle quelques définitions et propriétés utiles pour lasuite du manuscrit : l'estimateur de Horvitz-Thompson, qui est présenté commeun estimateur n'utilisant pas l'information auxiliaire ainsi que les techniques decalage qui permettent de modifier les poids de sondage de facon à prendre encompte l'information auxiliaire en restituant exactement dans l'échantillon leurstotaux sur la population.Le deuxième chapitre, qui est une partie d'un article de synthèse accepté pourpublication, présente les méthodes de régression ridge comme un remède possibleau problème de colinéarité des variables auxiliaires, et donc de mauvais conditionnement.Nous étudions les points de vue "model-based" et "model-assisted" dela ridge regression. Cette technique qui fournit de meilleurs résultats en termed'erreur quadratique en comparaison avec les moindres carrés ordinaires peutégalement s'interpréter comme un calage pénalisé. Des simulations permettentd'illustrer l'intérêt de cette technique par compar[a]ison avec l'estimateur de Horvitz-Thompson.Le chapitre trois présente une autre manière de traiter les problèmes de colinéaritévia une réduction de la dimension basée sur les composantes principales. Nousétudions la régression sur composantes principales dans le contexte des sondages.Nous explorons également le calage sur les moments d'ordre deux des composantesprincipales ainsi que le calage partiel et le calage sur les composantes principalesestimées. Une illustration sur des données de l'entreprise Médiamétrie permet deconfirmer l'intérêt des ces techniques basées sur la réduction de la dimension pourl'estimation d'un total en présence d'un grand nombre de variables auxiliaires / Survey sampling techniques are quite useful in a way to estimate population parameterssuch as the population total when the large dimensional auxiliary data setis available. This thesis deals with the estimation of population total in presenceof ill-conditioned large data set.In the first chapter, we give some basic definitions that will be used in thelater chapters. The Horvitz-Thompson estimator is defined as an estimator whichdoes not use auxiliary variables. Along with, calibration technique is defined toincorporate the auxiliary variables for sake of improvement in the estimation ofpopulation totals for a fixed sample size.The second chapter is a part of a review article about ridge regression estimationas a remedy for the multicollinearity. We give a detailed review ofthe model-based, design-based and model-assisted scenarios for ridge estimation.These estimates give improved results in terms of MSE compared to the leastsquared estimates. Penalized calibration is also defined under survey sampling asan equivalent estimation technique to the ridge regression in the classical statisticscase. Simulation results confirm the improved estimation compared to theHorvitz-Thompson estimator.Another solution to the ill-conditioned large auxiliary data is given in terms ofprincipal components analysis in chapter three. Principal component regression isdefined and its use in survey sampling is explored. Some new types of principalcomponent calibration techniques are proposed such as calibration on the secondmoment of principal component variables, partial principal component calibrationand estimated principal component calibration to estimate a population total. Applicationof these techniques on real data advocates the use of these data reductiontechniques for the improved estimation of population totals
|
2 |
Estimation de synchrones de consommation électrique par sondage et prise en compte d'information auxiliaire / Estimate the mean electricity consumption curve by survey and take auxiliary information into accountLardin, Pauline 26 November 2012 (has links)
Dans cette thèse, nous nous intéressons à l'estimation de la synchrone de consommation électrique (courbe moyenne). Etant donné que les variables étudiées sont fonctionnelles et que les capacités de stockage sont limitées et les coûts de transmission élevés, nous nous sommes intéressés à des méthodes d'estimation par sondage, alternatives intéressantes aux techniques de compression du signal. Nous étendons au cadre fonctionnel des méthodes d'estimation qui prennent en compte l'information auxiliaire disponible afin d'améliorer la précision de l'estimateur de Horvitz-Thompson de la courbe moyenne de consommation électrique. La première méthode fait intervenir l'information auxiliaire au niveau de l'estimation, la courbe moyenne est estimée à l'aide d'un estimateur basé sur un modèle de régression fonctionnelle. La deuxième l'utilise au niveau du plan de sondage, nous utilisons un plan à probabilités inégales à forte entropie puis l'estimateur de Horvitz-Thompson fonctionnel. Une estimation de la fonction de covariance est donnée par l'extension au cadre fonctionnel de l'approximation de la covariance donnée par Hájek. Nous justifions de manière rigoureuse leur utilisation par une étude asymptotique. Pour chacune de ces méthodes, nous donnons, sous de faibles hypothèses sur les probabilités d'inclusion et sur la régularité des trajectoires, les propriétés de convergence de l'estimateur de la courbe moyenne ainsi que de sa fonction de covariance. Nous établissons également un théorème central limite fonctionnel. Afin de contrôler la qualité de nos estimateurs, nous comparons deux méthodes de construction de bande de confiance sur un jeu de données de courbes de charge réelles. La première repose sur la simulation de processus gaussiens. Une justification asymptotique de cette méthode sera donnée pour chacun des estimateurs proposés. La deuxième utilise des techniques de bootstrap qui ont été adaptées afin de tenir compte du caractère fonctionnel des données / In this thesis, we are interested in estimating the mean electricity consumption curve. Since the study variable is functional and storage capacities are limited or transmission cost are high survey sampling techniques are interesting alternatives to signal compression techniques. We extend, in this functional framework, estimation methods that take into account available auxiliary information and that can improve the accuracy of the Horvitz-Thompson estimator of the mean trajectory. The first approach uses the auxiliary information at the estimation stage, the mean curve is estimated using model-assisted estimators with functional linear regression models. The second method involves the auxiliary information at the sampling stage, considering πps (unequal probability) sampling designs and the functional Horvitz-Thompson estimator. Under conditions on the entropy of the sampling design the covariance function of the Horvitz-Thompson estimator can be estimated with the Hájek approximation extended to the functional framework. For each method, we show, under weak hypotheses on the sampling design and the regularity of the trajectories, some asymptotic properties of the estimator of the mean curve and of its covariance function. We also establish a functional central limit theorem.Next, we compare two methods that can be used to build confidence bands. The first one is based on simulations of Gaussian processes and is assessed rigorously. The second one uses bootstrap techniques in a finite population framework which have been adapted to take into account the functional nature of the data
|
Page generated in 0.0811 seconds