• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lemmes de zéros et distribution des valeurs des fonctions méromorphes / Zero estimates and value distribution of meromorphic functions

Villemot, Pierre 06 November 2018 (has links)
Cette thèse porte sur des propriétés arithmétiques des fonctions méromorphes et transcendantes d'une variable. Dans le chapitre 3, nous définissons des mesures de transcendance pour les fonctions holomorphes et méromorphes sur un domaine régulier de C puis nous majorons ces mesures en fonction de la distribution des petites valeurs de la fonction étudiée.Grâce aux théories de Nevanlinna et d'Ahlfors, nous étudions dans le chapitre 4 la distribution des petites valeurs de certaines classes de fonctions méromorphes sur D ou C afin d'obtenir pour celles-ci des majorations explicites de leurs mesures de transcendance. L'application principale de ce travail est l'obtention de nouveaux lemmes de zéros polynomiaux pour de grandes familles de fonctions méromorphes et en particulier pour les fonctions de Weierstrass et les fonctions fuchsiennes. Dans le chapitre 5, nous montrons que ces lemmes de zéros polynomiaux conduisent à des bornes logarithmiques du nombre de points algébriques de degré et hauteur bornée contenus dans les graphes des fonctions étudiées. / This PhD thesis is about some arithmetic properties of meromorphic functions of one variable.In chapter 3, we define the transcendental measures for holomorphic and meromorphic functions on a regular domain of C, then we obtain upper bounds of these measures in terms of the distribution of small values of the function.Thanks to the Nevanlinna and Ahlfors theories, we study in chapter 4 the distribution of small values of some classes of meromorphic functions on D or C in order to obtain explicit upper bounds of transcendental measures.The main application of this work is the demonstration of new polynomial zero estimates for large classes of meromorphic functions, in particular for Weierstrass functions and fuchsian functions.In chapter 5, we prove that polynomial zero estimates lead to logarithmic bounds of the number of algebraic points of bounded degree and height contained in the graph of the function.
2

Distribution de valeurs des fonctions méromorphes ultramétriques, application de la théorie de Nevanlinna

Ojeda Fuentealba, Jacqueline Alejandra 21 October 2008 (has links) (PDF)
On étudie des propriétés des fonctions méromorphes dans un corps ultramétrique complet, algébriquement clos de caractéristique 0 qu'on note K (ex : K=Cp), ainsi que des propriétés de fonctions méromorphes dans un disque ouvert de K, prenant en compte pour cela le problème de Lazard, qu'on contourne en considérant une extension de K sphériquement complète. Les problèmes étudiés concernent d'une part la distribution des zéros pour différents types de fonctions méromorphes ultramétriques dans K ou dans un disque ouvert de K, avec notamment la Conjecture de Hayman. Et d'autre part, des problèmes d'unicité pour des fonctions méromorphes ultramétriques dans K ou dans un disque de K, qui satisfont certaines hypothèses : des fonctions du type (Po f)' et (P o g)' où P est un polynôme qui satisfait certaines conditions, ces fonctions partagent une autre fonction méromorphe qui est petite par rapport à f et g, en comptant les multiplicités. Ce dernier type de problèmes comporte naturellement des liens avec les problèmes portant sur les polynômes d'unicité pour des fonctions méromorphes dans K, et sur les ensembles d'unicité (URS). Finalement, on s'intéresse à l'existence ou non de solutions des équations fonctionnelles du type Diophantien : des équations fonctionnelles du type P(x)=Q(y) où P et Q sont des polynômes dont les coefficients sont des fonctions méromorphes. On introduit la notion de solutions admissibles pour ces type d'équations. La méthode la plus utilisée est la Théorie de Nevanlinna p-adique qui s'applique non seuleument à des fonctions méromorphes ultramétriques dans le corps K mais aussi aux fonctions méromorphes ultramétriques non bornées dans un disque ouvert de K.

Page generated in 0.1026 seconds