Spelling suggestions: "subject:"fonctions dde green déséquilibre"" "subject:"fonctions dde green rééquilibre""
1 |
Modélisation et simulation du transport quantique dans les transistors MOS nanométriquesBescond, Marc 26 November 2004 (has links) (PDF)
La réduction constante de la taille des transistors conduit aujourd'hui à des dispositifs nano-métriques dans lesquels les effets quantiques sont de plus en plus prédominants. Ce travail modélise des transistors MOSFET ultimes et détermine l'impact des effets quantiques dans les architectures multi-grilles émergeantes. Nous utilisons le formalisme auto-cohérent des fonctions de Green hors-équilibre exprimé dans la théorie des liaisons fortes. Nous simulons tout d'abord un transistor double-grille 2D confiné, dans lequel l'axe source-drain est représenté par une chaîne atomique. Nous étudions l'amplitude du courant tunnel source-drain en fonction de la longueur de grille et montrons que les transistors conservent des caractéristiques électriques acceptables jusqu'à une longueur de grille de 7 nm. Nous développons ensuite un modèle 3D pour décrire les architectures à nanofil de silicium (Tri-gate, Pi-gate, Omega-gate, Gate-all-around). Une étude détaillée illustre plusieurs concepts de la théorie de transport de Landauer (quantum de conductance, résistance des réservoirs) et compare les performances électriques de chaque configuration de grille. Nous discutons l'influence du contrôle électrostatique en fonction de la longueur de grille et des dimensions de la section transverse. Enfin, nous proposons un modèle capable de traiter la présence de défauts ponctuels dans de tels composants 3D et analysons l'impact de leur type et de leur position.
|
2 |
Traitement quantique original des interactions inélastiques pour la modélisation atomistique du transport dans les nano-structures tri-dimensionnelles / Original quantum treatment of inelastic interactions for modeling of atomistic transport in three-dimensional nanostructuresLee, Youseung 18 October 2017 (has links)
Le formalisme des fonctions de Green hors-équilibre (NEGF pour « Non-equilibrium Green’s function) a suscité au cours des dernières décennies un engouement fort pour étudier les propriétés du transport quantique des nanostructures et des nano-dispositifs dans lesquels les interactions inélastiques, comme la diffusion des électrons-phonons, jouent un rôle significatif. L'incorporation d'interactions inélastiques dans le cadre du NEGF s’effectue généralement dans l'approximation auto-cohérente de Born (SCBA pour « Self-consistent Born approximation) qui représente une approche itérative plus exigeante en ressources numériques. Nous proposons dans ce travail de thèse une méthode efficace alternative dite LOA pour (« Lowest Order Approximation. Son principal avantage est de réduire considérablement le temps de calcul et de décrire physiquement la diffusion électron-phonon. Cette approche devrait considérablement étendre l'accessibilité de l'utilisation de codes atomistiques de transport quantique pour étudier des systèmes 3D réalistes sans faire à des ressources numériques importantes. / Non-equilibrium Green’s function (NEGF) formalism during recent decades has attracted numerous interests for studying quantum transport properties of nanostructures and nano-devices in which inelastic interactions like electron-phonon scattering have a significant impact. Incorporation of inelastic interactions in NEGF framework is usually performed within the self-consistent Born approximation (SCBA) which induces a numerically demanding iterative scheme. As an alternative technique, we propose an efficient method, the so-called Lowest Order Approximation (LOA) coupled with the Pade approximants. Its main advantage is to significantly reduce the computational time, and to describe the electron-phonon scattering physically. This approach should then considerably extend the accessibility of using atomistic quantum transport codes to study three-dimensional (3D) realistic systems without requiring numerous numerical resources.
|
3 |
Modélisation tridimensionnelle multibandes du transport quantique dans les transistors à nanofilPons, Nicolas 08 June 2011 (has links)
L’amélioration des performances du transistor MOS passe par la réduction de ses dimensions. Dans quelques années, la longueur de grille des dispositifs va descendre en dessous de 10 nm. A cette échelle, les effets quantiques deviennent prépondérants et dégradent considérablement les performances électriques des transistors à simple grille. Le transistor à nanofil avec grille enrobante est une architecture alternative intéressante pour augmenter le contrôle électrostatique du canal de conduction. Malgré les améliorations apportées par cette architecture, le courant à l’état bloqué reste perturbé par l’effet tunnel dans la direction source-drain. Afin de réduire ce courant sans réduire celui à l’état passant, nous avons étudié l’impact d’un rétrécissement local de la section transverse du canal coté drain (architecture notch-MOSFET). Pour cela, nous avons développé un simulateur 3D basé sur le formalisme des fonctions de Green hors équilibre couplé de façon auto-cohérente avec l’équation de Poisson. Ces calculs sont effectués dans l’approximation de la masse effective. Nous avons ensuite étudié le transport des trous dans les transistors à nanofil de type p, ainsi que l’influence d’une impureté ionisée dans le canal de ces dispositifs. La complexité de la bande de valence a nécessité la mise en œuvre d’un modèle k∙p à 6 bandes inclus dans le simulateur 3D évoqué précédemment. / Performances improvement of MOS transistors involves reduction of its dimensions. In a few years, the gate length of devices will reach sub-10 nm regime. At this scale, quantum effects become preponderant and considerably degrade electric performances of simple-gate transistors. The Gate-all-around nanowire transistor is an interesting alternative architecture to improve electrostatic control of the conduction channel. Despite the improvements made thanks to this architecture, the OFF-current remains disturbed by tunneling effect in source-drain direction. In order to decrease this current without decreasing the ON-current, we have studied the impact of local narrowing of transverse cross-section in drain side of the channel (notch-MOSFET architecture). To this purpose, we have developed a 3D simulator based on Non-equilibrium Green function formalism coupled self-consistently with Poisson equation. These simulations are performed in the effective mass approximation. Then we have studied holes transport in p-type nanowire transistors and the influence of an ionized impurity in the channel of these devices. The valence band complexity required six-band k∙p model development include into previously mentioned 3D simulator.
|
Page generated in 0.084 seconds