• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation et simulation des effets quantiques en dynamique moléculaire : application à l'étude de la conduction protonique / Modelling and simulation of quantum effects in molecular dynamics : application to the study of proton conduction

Brieuc, Fabien 14 October 2016 (has links)
Cette thèse porte sur l'étude des effets quantiques en dynamique moléculaire (DM). La DM est une méthode numérique qui permet l'étude des propriétés de la matière condensée. Cependant, la méthode étant basée sur la mécanique classique, les effets quantiques associés à la dynamique des noyaux, tels que l'énergie de point zéro ou l'effet tunnel, ne sont pas pris en compte. Ces effets quantiques nucléaires peuvent cependant jouer un rôle majeur, en particulier aux basses températures et/ou dans les systèmes contenant des atomes légers comme l'hydrogène. La dynamique moléculaire par intégrales de chemins (PIMD) est souvent utilisée, dans ce cas, pour tenir compte de la nature quantique des noyaux. Cette approche fournit des résultats quantiques exacts, mais son coût en temps de calcul élevé limite son domaine d'application. La méthode du bain thermique quantique (QTB) a été proposée comme une alternative à la PIMD. L'approche QTB est particulièrement intéressante car son coût en temps de calcul est équivalent à celui de la DM standard permettant ainsi l'étude de systèmes complexes et de plus grande taille.La première partie de cette thèse est consacrée à l'étude de la méthode QTB. Nous avons étudié le comportement de la méthode sur différents systèmes modèles afin d'étudier ses limites. En particulier, le problème du "zero point energy leakage" est étudié en détail et nous montrons que l'augmentation du coefficient de friction du QTB permet de limiter ce problème. Nous avons également développé une combinaison de la méthode QTB avec la méthode PIMD. Cette méthode combinée QTB-PIMD permet de réduire le coût en temps de calcul des simulations PIMD standards.Dans une deuxième partie, nous avons utilisé ces méthodes pour étudier la conduction de l'hydrogène dans des matériaux pérovskites. Nous nous intéressons d'abord à l'impact des effets quantiques sur la diffusion de l'hydrogène dans BaZrO3, un matériau d'électrolyte potentiel pour piles à hydrogène. L'hydrogène étant l'élément le plus léger, un impact important des effets quantiques est attendu. Nous trouvons que les effets quantiques sont effectivement importants à basse température, mais leur impact sur la diffusion reste faible aux températures de fonctionnement typiques des piles à hydrogène. Enfin, nous avons étudié les mécanismes de diffusion de l'hydrogène dans GdBaCo2O5.5. Nous mettons en évidence une diffusion anisotrope dans ce matériau et deux mécanismes principaux de diffusion. / This thesis deals with the study of quantum effects in molecular dynamics (MD). MD is a powerful numerical method to investigate the properties of condensed matter systems. However, since the method is based on classical mechanics, quantum effects associated with the dynamics of the nuclei, such as zero-point energy or tunnelling, are not taken into account. These nuclear quantum effects can, however, play a major role in particular at low temperatures and/or in systems containing light atoms such as hydrogen. In these cases, a standard way to account for the quantum nature of the nuclei is to use path integral molecular dynamics (PIMD). This method provides exact quantum results however its high computational cost limits its range of applicability. The quantum thermal bath (QTB) method has been proposed as an alternative to PIMD. The QTB method is particularly appealing because of its computational cost that is equivalent to standard MD thus allowing to study large and complex systems.The first part of this thesis is devoted to the study of the QTB method. We have studied the behavior of the method in selected model systems in order to investigate its limitations. We have focused, in particular, on the zero-point energy leakage problem and found that increasing the friction coefficient of the QTB can significantly limit this problem. We also have developed another way to use the QTB method by combining it with PIMD. This combined QTB-PIMD method allows, in particular, to decrease the computational cost of standard PIMD simulations.In a second part, we have used these methods to study hydrogen conduction in perovskite materials. We have first investigated the impact of quantum effects on the diffusion of hydrogen in BaZrO3, a potential electrolyte material for hydrogen fuel cells. Since hydrogen is the lightest element, we expect quantum effects to have a significant impact on its dynamics. We find that quantum effects are indeed significant at low temperatures although their impact on the diffusion remains low at the typical working temperatures of hydrogen fuel cells. Finally, we have investigated the diffusion mechanisms of hydrogen in GdBaCo2O5.5. We evidence that the diffusion is anisotropic in this material and two main diffusion mechanisms.
2

Etude et modélisation du comportement électrique des transistors MOS fortement submicroniques

Prégaldiny, Fabien 12 December 2003 (has links) (PDF)
La modélisation précise des transistors MOS pour la conception et la simulation de circuits est un défi constant en raison de la nature évolutive de la technologie CMOS. L'objectif de cette thèse est d'une part d'étudier les principaux effets résultant de la miniaturisation des TMOS et d'autre part de proposer des modèles analytiques simples et originaux permettant de les prendre en compte. Les bases physiques nécessaires à la formulation d'un modèle idéal sont présentées au chapitre 2, de même qu'un état de l'art des principaux modèles compacts de TMOS (modèles destinés à la simulation de circuits) actuellement utilisés. Le troisième chapitre est consacré à une étude détaillée du comportement capacitif extrinsèque du TMOS fortement submicronique. Un nouveau modèle de capacités parasites est également proposé puis validé à partir de simulations numériques à deux dimensions. Le quatrième chapitre fait état d'une étude approfondie des effets quantiques au sein des transistors n-MOS. L'influence des effets quantiques sur les différentes caractéristiques électriques (I-V, C-V) du TMOS est discutée. Un nouveau modèle quantique, formulé intégralement en potentiel de surface, est alors développé. Ce modèle est complètement analytique, valable de l'accumulation à l'inversion, et ne nécessite aucun paramètre d'ajustement. Utilisé conjointement à un modèle en feuille de charge, il autorise une description précise et continue des caractéristiques électriques majeures du TMOS telles que les charges, les capacités, le courant de drain, la transconductance, etc. Le nouveau modèle est finalement validé par comparaison avec des résultats expérimentaux de différentes technologies CMOS avancées. En conclusion, cette thèse démontre qu'une approche pragmatique de la modélisation compacte permet de réaliser des modèles simples, efficaces et physiquement cohérents.
3

A study of nuclear quantum effects in hydrogen bond symmetrization via the quantum thermal bath / Etude des effets quantiques nucléaires lors de la symétrisation de liaisons hydrogène par la méthode du bain thermique quantique

Bronstein, Yael 26 September 2016 (has links)
L’étude des effets quantiques nucléaires (NQE) suscite de plus en plus d’intérêt. En effet, les effets quantiques comme l’effet tunnel ou l’énergie de point zéro, peuvent profondément modifier les propriétés de matériaux constitués d'atomes légers comme l'hydrogène. Les méthodes standards de simulation des NQE sont basées sur les intégrales de chemin. Le bain thermique quantique (QTB) constitue une alternative à ces méthodes: le principe est que les degrés de liberté classiques du système obéissent à une équation de Langevin et sont couplés à des oscillateurs harmoniques quantiques. Dans l’équation de Langevin classique, la force aléatoire est un bruit blanc et le théorème de fluctuation-dissipation classique est vérifié; avec le QTB, le théorème de fluctuation-dissipation quantique est vérifié. Nous étudierons à travers des modèles simples la validité et les limites du QTB et montrerons qu'il permet de simuler des systèmes de la matière condensée en incluant les NQE en générant leurs propriétés structurales et dynamiques. Nous montrerons que le QTB est particulièrement adapté à l’étude de la symétrisation de liaisons hydrogènes et permet d'identifier précisément une pression de transition. Celle-ci dépend de la distance entre deux oxygènes voisins comme dans la glace sous haute pression, mais est modifiée par la présence d'impuretés ioniques ou par l'environnement atomique des liaisons hydrogènes comme dans la phase delta de AlOOH. De plus, en comparant des simulations classiques à des simulations QTB, nous pouvons identifier les rôles respectifs des effets quantiques et thermiques dans ces transitions de phase. / Increasing interest has risen for nuclear quantum effects (NQE) in the recent past. Indeed, NQE such as proton tunneling and zero point energy often play a crucial role in the properties of hydrogen-containing materials. The standard methods to simulate NQE are based on path integrals. An alternative to these methods is the Quantum Thermal Bath (QTB): it is based on a Langevin equation where the classical degrees of freedom are coupled to an ensemble of quantum harmonic oscillators. In the classical Langevin equation, the random force is a white noise and fulfills the classical fluctuation-dissipation theorem, while within the QTB formalism, it fulfills the quantum fluctuation-dissipation theorem. We investigate through simple models the reliability and the limits of the QTB and show that the QTB enables realistic simulations including NQE of condensed-phase systems, generating static and dynamic information such as pair correlation functions and vibrational spectra which can be confronted with experimental results. We show that the QTB is particularly successful in the study of the symmetrization of hydrogen bonds in several systems. Indeed, the difficulty lies in the identification of a precise transition pressure since this phase transition is often blurred by quantum or thermal fluctuations. In high-pressure ice, it depends on the oxygen-oxygen distance but it can be affected by ionic impurities and by the asymmetric environment of hydrogen bonds as in the delta phase of AlOOH. Moreover, by comparing results from QTB and standard ab initio simulations, we are able to disentangle the respective roles of NQE and thermal fluctuations in these phase transitions.
4

Conception, réalisation et caractérisation de grilles en silicium polycristallin déposé amorphe à basse température et dopé bore in situ

JORDANA, Emmanuel 20 July 2005 (has links) (PDF)
Depuis 40 ans, suivant le rythme dicté par la loi de Moore, la microélectronique évolue de façon continue grâce à la réduction constante des dimensions des transistors MOS. Celle-ci a entraîné pour les grilles polycristallines des transistors PMOS l'apparition de la déplétion de grille et de la pénétration du bore dans l'isolant, dégradant fortement leurs performances, lorsque le dopage par implantation ionique est utilisé. Afin de réduire ces deux effets, nous proposons une autre forme de dopage pour l'électrode de grille: un dépôt de silicium amorphe à basse température, dopé bore in-situ, à partir de BCl3 et de Si2H6. Le premier chapitre de cette thèse est consacré à une étude bibliographique portant sur l'état de l'art et les solutions technologiques proposées pour améliorer les performances des transistors MOS. A partir de cette étude, nous montrons tout l'intérêt de la solution technologique que nous proposons. Le second chapitre est dédié au développement de simulateurs capacité-tension et courant-tension. Nous montrons que la prise en compte du confinement des porteurs aux interfaces est indispensable afin d'extraire les paramètres des composants avec le maximum de précision lors de la caractérisation électrique. Enfin, dans le troisième chapitre, nous donnons les résultats des études expérimentales de la couche de polysilicium (résistivité, contraintes, rugosité&) et de capacités MOS polySi(P+) / SiO2 (3,8nm) / Si. Malgré une amélioration nécessaire de la fiabilité de la couche de SiO2, la caractérisation nous montre que la déplétion de grille est pratiquement inexistante.
5

Fully quantum dynamics of protonated water clusters / Dynamique totalement quantique d'agrégats d'eau protonés

Mouhat, Félix 07 September 2018 (has links)
De nos jours, il n'existe encore aucune théorie capable de proposer une description précise et quantitative du transfert de proton en solution. En effet, ce problème est complexe du fait de la grande diversité des interactions existant dans l'eau liquide, à savoir: des interactions non liantes de type Van der Waals, des liaisons faiblement covalentes et des liaisons hydrogènes remarquablement fortes. Ces dernières sont d'ailleurs à l'origine des nombreuses propriétés fascinantes de l'eau à l'échelle macroscopique. À cela s'ajoutent les effets quantiques nucléaires dus à la faible masse de l'hydrogène, qui modifient profondément la nature de la surface d'énergie potentielle décrivant le transfert de proton le long de sa coordonnée de réaction. Nous proposons dans cette thèse une approche tout quantique basée sur une description quasi exacte de la fonction d'onde du système par l'utilisation de méthodes stochastiques de type Monte Carlo Quantique. Cette technique, combinée avec le formalisme des équations de Langevin et des intégrales de chemin de Feynman, permet de simuler à un niveau de précision inédit, n'importe quel système chimique en phase gaz ou en solution. Nous appliquons cette méthodologie à des agrégats d'eau neutres ou protonés pour apporter de nouveaux éclaircissements sur les phénomènes microscopiques régissant la diffusion du proton hydraté dans de tels systèmes. Il est mis en évidence que la mobilité du proton est optimale pour des températures proches des conditions ambiantes, du fait de la compétition subtile entre les effets thermiques et quantiques nucléaires. / There is no theory up to now able to provide an accurate and quantitative description of the proton transfer (PT) yet. Indeed, the complexity of the problem stems from the large diversity of the existing interactions in liquid water, namely: non bonding Van der Waals interactions, weakly covalent bonds and remarkably strong H-bonds. The latter ones are at the origin of the numerous fascinating properties of water at the macroscopic scale. In addition to such interactions, the nuclear quantum effects arising from the hydrogen light mass deeply modify the potential energy surface, and must be taken into account. In this thesis, we propose a fully quantum approach based on an almost exact description of the electronic wave function by means of Quantum Monte Carlo (QMC) methods. Our novel technique combines QMC with a Langevin-based Molecular Dynamics and the Feynman's path integral formalism. This allows one to perform fully quantum simulations of systems in gas or condensed phase, at an unprecedented level of accuracy,. We apply our approach to neutral or charged protonated water clusters to shed light on the microscopic phenomena driving the proton diffusion in such systems. We discovered that the proton hopping is optimal for temperatures close to ambient conditions, due to the subtle competition between thermal and nuclear quantum effects. This is highly suggestive of the importance of quantum nuclear effects to make PT processes - relevant for life - most efficient at room temperature.
6

Modélisation tridimensionnelle multibandes du transport quantique dans les transistors à nanofil

Pons, Nicolas 08 June 2011 (has links)
L’amélioration des performances du transistor MOS passe par la réduction de ses dimensions. Dans quelques années, la longueur de grille des dispositifs va descendre en dessous de 10 nm. A cette échelle, les effets quantiques deviennent prépondérants et dégradent considérablement les performances électriques des transistors à simple grille. Le transistor à nanofil avec grille enrobante est une architecture alternative intéressante pour augmenter le contrôle électrostatique du canal de conduction. Malgré les améliorations apportées par cette architecture, le courant à l’état bloqué reste perturbé par l’effet tunnel dans la direction source-drain. Afin de réduire ce courant sans réduire celui à l’état passant, nous avons étudié l’impact d’un rétrécissement local de la section transverse du canal coté drain (architecture notch-MOSFET). Pour cela, nous avons développé un simulateur 3D basé sur le formalisme des fonctions de Green hors équilibre couplé de façon auto-cohérente avec l’équation de Poisson. Ces calculs sont effectués dans l’approximation de la masse effective. Nous avons ensuite étudié le transport des trous dans les transistors à nanofil de type p, ainsi que l’influence d’une impureté ionisée dans le canal de ces dispositifs. La complexité de la bande de valence a nécessité la mise en œuvre d’un modèle k∙p à 6 bandes inclus dans le simulateur 3D évoqué précédemment. / Performances improvement of MOS transistors involves reduction of its dimensions. In a few years, the gate length of devices will reach sub-10 nm regime. At this scale, quantum effects become preponderant and considerably degrade electric performances of simple-gate transistors. The Gate-all-around nanowire transistor is an interesting alternative architecture to improve electrostatic control of the conduction channel. Despite the improvements made thanks to this architecture, the OFF-current remains disturbed by tunneling effect in source-drain direction. In order to decrease this current without decreasing the ON-current, we have studied the impact of local narrowing of transverse cross-section in drain side of the channel (notch-MOSFET architecture). To this purpose, we have developed a 3D simulator based on Non-equilibrium Green function formalism coupled self-consistently with Poisson equation. These simulations are performed in the effective mass approximation. Then we have studied holes transport in p-type nanowire transistors and the influence of an ionized impurity in the channel of these devices. The valence band complexity required six-band k∙p model development include into previously mentioned 3D simulator.
7

Etude du Transport dans les Transistors MOSFETs Contraints: Modélisation Multi-échelle

Feraille, Maxime 17 June 2009 (has links) (PDF)
La réduction des transistors MOSFETs, briques de base des circuits intégrés, ne permet plus d'améliorer efficacement leurs performances. Des leviers technologiques ont été mis en place dans les procédés de fabrication de ces transistors pour y remédier. L'introduction intentionnelle de contraintes constitue l'une de ces solutions. De fait, l'orientation des contraintes en fonction de la direction du canal influence fortement les propriétés de transport des transistors MOSFETs. Les méthodes de calculs de structures de bandes semi-empiriques EPM et */k.p/* dans l'approximation de la fonction enveloppe, ont été développées afin d'étudier les perturbations occasionnées sur la structure électronique des matériaux par l'action conjuguée des contraintes mécaniques et du confinement. L'influence de ces dernières perturbations sur les propriétés de transport a, par la suite, été analysée à l'aide de simulations avancées Monte Carlo "fullband" et Kubo-Greenwood. Les résultats théoriques obtenus ont été confrontés aux données expérimentales de flexion à quatre pointes (Wafer Bending), mesurées au cours de cette thèse. Il apparaît clairement que la prise en compte du couplage complexe des effets de confinement et de contrainte joue un rôle essentiel dans les propriétés de transport des dispositifs MOSFETs actuels. Enfin, chaque étape de modélisation a donné lieu à une discussion des domaines de validité des outils de simulation Dérive-Diffusion et Hydrodynamique, classiquement utilisés dans l'industrie pour la modélisation des dispositifs MOSFETs.

Page generated in 0.0734 seconds