• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Establishing a sea bottom model by applying a multi-sensor acoustic remote sensing approach

Siemes, Kerstin 05 July 2013 (has links)
Detailed information about the oceanic environment is essential for many applications in the field of marine geology, marine biology, coastal engineering, and marine operations. Especially, knowledge of the properties of the sediment body is often required. Acoustic remote sensing techniques have become highly attractive for classifying the sea bottom and for mapping the sediment properties, due to their high coverage capabilities and low costs compared to common sampling methods. In the last decades, a number of different acoustic devices and related techniques for analyzing their signals have evolved. Each sensor has its specific application due to limitations in the frequency range and resolution. In practice, often a single acoustic tool is chosen based on the current application, supported by other non-acoustic data where required. However, different acoustic remote sensing techniques can supplement each other, as shown in this thesis. Even more, a combination of complementary approaches can contribute to the proper understanding of sound propagation, which is essential when using sound for environmental classification purposes. This includes the knowledge of the relation between acoustics and sediment properties, the focus of this thesis. Providing a detailed three dimensional picture of the sea bottom sediments that allows for gaining maximum insight into this relation is aimed at.<p><p><p>Chapters 4 and 5 are adapted from published work, with permission:<p>DOI:10.1121/1.3569718 (link: http://asadl.org/jasa/resource/1/jasman/v129/i5/p2878_s1) and<p>DOI:10.1109/JOE.2010.2066711 (link: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5618582&queryText%3Dsiemes)<p>In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of the Université libre de Bruxelles' products or services.<p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished

Page generated in 0.0788 seconds