• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 108
  • 7
  • Tagged with
  • 117
  • 117
  • 117
  • 15
  • 14
  • 11
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Bulk flow properties of wheat

Bian, Qi January 1900 (has links)
Master of Science / Department of Grain Science and Industry / Kingsly Ambrose / Consistent and reliable flow of bulk wheat from hoppers and silos is very significant in wheat handling and processing. Bulk wheat flow challenges such as inconsistent flow, arching, etc., are common during handling. The irregular size and non-uniformity of physical properties, the presence of impurities affects the flow behavior during discharge. Chaff and insects infested kernels are the two most common impurities present in wheat. In this research, the effect of these two impurities on their physical and flow properties of wheat were studied. Physical and flow indicators, such as bulk, tapped, particle densities, angle of repose, Hausner’s ratio, Carr index, and porosity measures the flowability of uncompacted bulk solids. Meanwhile, flow properties tested by shear testing principle based on Jenike’s method, simulated bulk wheat under pressure in bins/hoppers. The dynamic properties tested quantify the energy required to flow, compressibility and permeability at dynamic handling situations. Due to the presence of impurities and moisture content differences, bulk density and angle of repose of wheat varied from 801.54kg/m3 to 718.36kg/m3, and 23.6° to 38.4°, respectively. Angle of internal friction and wall friction angle that reflect interaction between particles and particle with bins/hopper walls, ranged from 23.95° to 43.13° and 15.46° to 20.33°, respectively. In addition to instrumental flow property evaluation, the flow profile, discharge rate, and particle velocity during hopper flow of bulk wheat was studied using Particle Image Velocimetry method. Mass flow and funnel flow hopper dimensions were used for this flow profile analysis. The discharge rate decreased from 1.67 to 1.12 kg/s for mass flow and 1.42 to 0.86 kg/s for funnel flow when the chaff in bulk wheat increased from 0% to 7.5% (weight basis). Analysis of the active flow zone indicated that bulk wheat without chaff had a uniform flow compared to wheat with chaff in the bulk. The findings from this study will be useful for design of hopper bottom bins and handling equipment based on the wheat quality and percent moisture content.
62

Quantifying the effects of chemical and physical properties of skim milk and yogurts using standard methods and a novel rapid detection method

Menard, Sara Lynn January 1900 (has links)
Master of Science / Department of Food Science / Karen A. Schmidt / This research sets out to determine how varying factors such as electromagnetic fluid conditioning (EFC) and varying protein and sugar contents can influence yogurt and skim milks overall quality. EFC uses magnets to alter the chemical and physical properties of skim milk in these studies. EFC has many different treatment parameters to optimize before this new processing technology can be industrialized. Treatment parameters include voltage, exposure time, flow rate, and magnetic field direction, as studied in this research. Voltage was altered 10 and 30 V for 2 and 10 minutes. This study showed that at 2 minutes that skim milk was not altered, but at both voltages at 10 minutes some changes occurred to surface tension and color properties (L* and a* values) of skim milk. For both voltages at 10 minutes, it was always the negative direction that experienced the most changes. A separate EFC experiment was done that set out to determine if pretreating skim milk with EFC, would have an effect on yogurt’s quality post fermentation throughout storage. Results indicated that EFC does alter the yogurt’s properties, but not in a desirable manner. Results were undesirable changes to the product’s firmness and syneresis when compared to the control sample. Dielectric spectroscopy is a rapid method to determine if varying protein and sugar contents has compromised yogurt’s quality. In the dielectric spectroscopy study, this research wanted to determine if varying protein and sugar contents influenced dielectric properties enough to where a model could be developed to predict yogurt’s firmness. Both of these methods, EFC and dielectric spectroscopy, are novel technologies to the dairy industry where, both have been very minimally tested on yogurt. This research proved to be a stepping stone to open further doors to research in these areas due to results indicating changes but not pin-pointing exactly what is going on due to these technologies.
63

Radio frequency dielectric heating and hyperspectral imaging of common foodborne pathogens

Michael, Minto January 1900 (has links)
Doctor of Philosophy / Department of Food Science / Randall K. Phebus / Intervention techniques to control foodborne pathogens, and rapid identification of pathogens in food are of vital importance to ensure food safety. Therefore, the first objective of this research was to study the efficacy of radio frequency dielectric heating (RFDH) against C. sakazakii and Salmonella spp. in nonfat dry milk (NDM) at 75, 80, 85, or 90°C. Using thermal-death-time (TDT) disks, D-values of C. sakazakii in high heat (HH)- and low heat (LH)-NDM were 24.86 and 23.0 min at 75°C, 13.75 and 7.52 min at 80°C, 8.0 and 6.03 min at 85°C, and 5.57 and 5.37 min at 90°C, respectively. D-values of Salmonella spp. in HH- and LH-NDM were 23.02 and 24.94 min at 75°C, 10.45 and 12.54 min at 80°C, 8.63 and 8.68 min at 85°C, and 5.82 and 4.55 min at 90°C, respectively. The predicted (TDT) and observed (RFDH) destruction of C. sakazakii and Salmonella spp. were in agreement, indicating that the organisms' behavior was similar regardless of the heating system (conventional vs. RFDH). However, RFDH can be used as a faster and more uniform heating method for NDM to achieve the target temperatures. The second objective of this research was to study if hyperspectral imaging can be used for the rapid identification and differentiation of various foodborne pathogens. Four strains of C. sakazakii, 5 strains of Salmonella spp., 8 strains of E. coli, and 1 strain each of L. monocytogenes and S. aureus were used in the study. Principal component analysis and kNN (k-nearest neighbor) were used to develop classification models, which were then validated using a cross-validation technique. Classification accuracy of various strains within genera including C. sakazakii, Salmonella spp. and E. coli, respectively was 100%; except within C. sakazakii, strain BAA-894, and within E. coli, strains O26, O45 and O121 had 66.67% accuracy. When all strains were studied together (irrespective of their genera) for the classification, only C. sakazakii P1, E. coli O104, O111 and O145, S. Montevideo, and L. monocytogenes had 100% classification accuracy; whereas, E. coli O45 and S. Tennessee were not classified (classification accuracy of 0%).
64

Stochastic modeling of flow behavior and cell structure formation during extrusion of biopolymer melts

Manepalli, Pavan Harshit January 1900 (has links)
Master of Science / Department of Grain Science and Industry / Sajid Alavi / Extrusion is a widely used processing technology for various food products and is also commonly applied in non-food applications involving plastics, rubber and metal. Expanded products for human and animal consumption such as snacks, breakfast cereal, pet food and aquatic food typically consist of a biopolymer matrix of starch and proteins that have natural physical, chemical and polymeric variability. Additionally, variability in extrusion parameters such as water injection and screw speed is often observed depending on the process controls employed. This can potentially lead to inconsistency in product quality. Stochastic modeling helps in studying the impact of variability of various parameters on the end product, which in turn helps in better process and product quality control. The primary purpose of this research was to develop a mathematical model for flow behavior of biopolymer melts inside extruder barrel and bubble growth dynamics after exiting the extruder using mass, heat and momentum transfer equations. This model was integrated with a Monte-Carlo based stochastic interface for input of randomly generated process data (based on experimental data acquisition) and output of simulated distributions of end-product properties such as expansion ratio and cellular architecture parameters (cell size and wall thickness). The mathematical model was experimentally validated using pilot-scale twin screw extrusion for processing of cereal-based cellular products. Process and product data were measured at different in-barrel moisture contents (19-28% dry basis) and experimental screw speeds (250-330 rpm). Experimental process parameters such as specific mechanical energy (212.8-319.3 kJ/kg), die temperature (120.7-170.6oC), die pressure (3160-7683 kPa) and product characteristics such as expansion ratio (3.29-16.94) and cell size or bubble radius (435-655 microns) compared well with simulated results from the mathematical model viz., specific mechanical energy (217.6-323.9 kJ/kg), die temperature (116.8-176.1oC), die pressure (3478-6404 kPa), expansion ratio (4.56-19.4) and bubble radius (426-728 microns). Experimental variability in product characteristics was quantified using coefficient of variation which compared well with simulation results (example, 2.5-4.9% versus 0.24-3.1% respectively for expansion ratio). The stochastic model was also used to conduct sensitivity analysis for understanding which raw material and process characteristics contribute most to product variability. Sensitivity analysis showed that the water added in extruder affects the magnitude and variability of expansion ratio the most, as compared to screw speed and consistency index.
65

Factors affecting female consumers' acceptability on nail polish

Sun, Chen January 1900 (has links)
Master of Science / Food Science Institute / Koushik Adhikari / The market of nail polish has been booming in recent years. Research on nail polish is scarce. A sensory lexicon for nail polish has been developed at Kansas State University, but how sensory factors affect female consumers’ acceptability of nail polish has not been examined. Also, other factors, such as price and usage characteristics that could affect consumers’ acceptability, are yet to be determined. A nail polish consumer study was conducted at Kansas State University to explore several sensory and non-sensory factors that could affect female consumers’ acceptability of nail polish. Eight nail polish samples, belonging to four categories, namely, regular (REG), gel (GEL), flake (FLK) and water-based (WAT), were evaluated by each of the 98 female consumers. The questionnaire consisted of three sections – application, observation and general usage questions. Results showed that consumers rated the samples similarly in both the application and observation sections. In general, consumers preferred the REG and the GEL samples more than the FLK and the WAT samples. Among all the sensory attributes, appearance attributes were the major attributes that affected consumers’ overall acceptability, while aroma had negligible impact on acceptability. Some sensory attributes like runny, shininess, opacity, spreadability, smoothness, coverage and wet-appearance were found to drive the consumer’s overall acceptability positively, while others such as pinhole, fatty-edges, blister, brushlines, pearl-like, flake-protrusion, glittery and initial-drag impacted their liking negatively. Four clusters of consumers were identified based on the consumers’ overall liking scores for both the application and observation sections. Considering all the factors that could affect consumers’ acceptability, sensory appeal, price, and conveniences of usage were the top factors picked by consumers. Age was also a factor that affected consumers’ acceptability for some of the samples. Consumers’ overall acceptability for these studied samples could guide a beauty store or a nail salon on building their selection on nail polishes. Consumers’ acceptability on different sensory attributes could help a nail polish company modify or improve their nail polish formula. The consumer cluster information could benefit a nail polish company on marketing a specific category of product and advertising to a specific group of consumers.
66

The influence of native wheat lipids on the rheological properties and microstructure of dough and bread

Cropper, Sherrill Lyne January 1900 (has links)
Doctor of Philosophy / Department of Grain Science and Industry / Hulya Dogan / Jon Faubion / Bread quality and final crumb grain are reflective of the ability for wheat flour dough to retain and stabilize gas cells during the baking process. The visco-elastic properties of dough allow for the incorporation of air cells and expansion during fermentation and baking. The gluten-starch matrix provides the backbone support. However, following the end of proofing and during the beginning of baking, the structure weakens due to over-extension and expansion and the matrix begins to separate and eventually break down. Native wheat lipids, which are found in small quantities in wheat flour, provide a secondary support for gas cell stabilization because of their amphiphilic characteristics and ability to move to the interface and form condensed monolayers. The objectives of this research were to evaluate the influence of native wheat lipids on the rheological properties of dough and the microstructure of bread. Native wheat lipids were extracted from straight-grade flour and separated into total, free, bound, nonpolar, glycolipids, and phospholipids using solid-phase extraction (SPE) with polar and nonpolar solvents. Defatted flour was reconstituted using each lipid fraction at a range of levels between 0.2% and 2.8%. Dough and bread were made following AACC Method 10-10.03. Rheological testing of the dough and evaluation of the microstructure of the bread was conducted using small and large deformation testing, C-Cell imaging, and x-ray microtomography analysis to determine changes in visco-elastic properties and gas cell structure and distribution. Rheological assessment through small amplitude oscillatory measurements demonstrated that nonpolar, phospholipids, and glycolipid fractions had a greater interaction with both proteins and starch in the matrix, creating weaker dough. Nonpolar, phospholipids, and glycolipids, varied in their ability to stabilize gas cells as determined by strain hardening index. C-Cell imaging and x-ray microtomograpy testing found that treatments containing higher concentrations of polar lipids (glycolipids and phospholipids) had a greater effect on overall loaf volume, cell size, and distribution. This illustrates that level and type of native wheat lipids influence the visco-elastic properties of dough and gas cell size, distribution, cell wall thickness, and cell stability in bread.
67

Influence of magnetic field exposure and clay mineral addition on the fractionation of Greek yogurt whey components

Kyle, Clinton January 1900 (has links)
Master of Science / Food Science Institute / Jayendra Amamcharla / Greek yogurt is one of the largest-growing sectors in the dairy industry accounting for over 25% of yogurt sales in the United States. Greek yogurt is produced by removing a portion of water and water soluble components from yogurt. Consequently, a large quantity of Greek yogurt whey (GYW) is being produced as a co-product. GYW is compositionally different from cheese whey, and thus poses economic and environmental challenges to the dairy industry. The objective of the present study was to evaluate two physical treatments as alternative methods for separating valuable GYW components: magnetic fluid treatment (MFT) and the addition of sepiolite, a clay mineral. A MFT chamber was designed using four pairs of neodymium magnets arranged to produce a magnetic field strength of 0.6 Tesla. Three batches of GYW each from two manufacturers were procured. A 2×3 factorial design was used with MFT or without MFT and the addition of zero, two, or four grams of sepiolite per 100g of GYW. The pH of GYW was adjusted to 7.2 using 5N NaOH solution, and the GYW was pumped at a rate of 7.5 L/min through the MFT system with or without MFT chamber attached. The sample was split into three sub-samples, heated to 80°C, and sepiolite was added as per the experimental design. The samples were centrifuged at 1,000g for five minutes. The top aqueous layer was separated and analyzed for total solids, ash, lactose, protein, calcium, phosphates, and sodium content along with color. MFT did not influence the analyzed whey components (P > 0.05) except for lactose. However, addition of sepiolite influenced protein content and a* and b* color values for the top aqueous layers (P < 0.05). Both levels of sepiolite addition resulted in about a 50% decrease in protein compared to original GYW. Adding two grams of Sepiolite per 100g of GYW from manufacturer 1 resulted in b* decreasing from 25.99 to 8.16 compared to treated GYW with no sepiolite. Sepiolite was found to have possible applications in the removal of proteins and color pigments in GYW.
68

Understanding methods for internal and external preference mapping and clustering in sensory analysis

Yenket, Renoo January 1900 (has links)
Doctor of Philosophy / Department of Human Nutrition / Edgar Chambers IV / Preference mapping is a method that provides product development directions for developers to see a whole picture of products, liking and relevant descriptors in a target market. Many statistical methods and commercial statistical software programs offering preference mapping analyses are available to researchers. Because of numerous available options, there are two questions addressed in this research that most scientists must answer before choosing a method of analysis: 1) are the different methods providing the same interpretation, co-ordinate values and object orientation; and 2) which method and program should be used with the data provided? This research used data from paint, milk and fragrance studies, representing complexity from lesser to higher. The techniques used are principal component analysis, multidimensional preference map (MDPREF), modified preference map (PREFMAP), canonical variate analysis, generalized procrustes analysis and partial least square regression utilizing statistical software programs of SAS, Unscrambler, Senstools and XLSTAT. Moreover, the homogeneousness of consumer data were investigated through hierarchical cluster analysis (McQuitty’s similarity analysis, median, single linkage, complete linkage, average linkage, and Ward’s method), partitional algorithm (k-means method), nonparametric method versus four manual clustering groups (strict, strict-liking-only, loose, loose-liking-only segments). The manual clusters were extracted according to the most frequently rated highest for best liked and least liked products on hedonic ratings. Furthermore, impacts of plotting preference maps for individual clusters were explored with and without the use of an overall mean liking vector. Results illustrated various statistical software programs were not similar in their oriented and co-ordinate values, even when using the same preference method. Also, if data were not highly homogenous, interpretation could be different. Most computer cluster analyses did not segment consumers relevant to their preferences and did not yield as homogenous clusters as manual clustering. The interpretation of preference maps created by the highest homogeneous clusters had little improvement when applied to complicated data. Researchers should look at key findings from univariate data in descriptive sensory studies to obtain accurate interpretations and suggestions from the maps, especially for external preference mapping. When researchers make recommendations based on an external map alone for complicated data, preference maps may be overused.
69

The effects of four packaging systems and storage times on the survival of Listeria monocytogenes in shelf-stable smoked pork and beef sausage sticks and whole muscle turkey jerky

Lobaton-Sulabo, April Shayne S. January 1900 (has links)
Master of Science / Department of Food Science / Elizabeth A. E. Boyle / To validate how packaging and storage reduces Listeria monocytogenes (Lm) on whole muscle turkey jerky and smoked sausage sticks, four packaging systems, including heat seal (HS), heat seal with oxygen scavenger (HSOS), nitrogen flushed with oxygen scavenger (NFOS), and vacuum (VAC), and four ambient temperature storage times were evaluated. Commercially available whole turkey jerky and pork and beef smoked sausage sticks were inoculated with Lm using a dipping or hand-massaging method, respectively. There was no interaction on packaging and storage time on Lm reduction on smoked sausage sticks and an Lm log reduction of >2.0 log CFU/cm[superscript]2 was achieved in smoked sausage sticks packaged in HS, HSOS, and VAC. A >2.0 log CFU/cm[superscript]2 reduction was achieved after 24 h of ambient temperature storage, regardless of package type. NFOS was less effective in reducing Lm by more than 0.5 log CFU/cm[superscript]2 compared to HS, HSOS or VAC. After 30 d of ambient storage, Lm had been reduced by 3.3 log CFU/cm[superscript]2 for all packaging environments. In turkey jerky, Lm reduction was affected by the interaction of packaging and storage time. HS, HSOS, NFOS, or VAC in combination with 24, 48, or 72 h ambient temperature storage achieved <1.0 log CFU/cm[superscript]2. After 30 d at ambient temperature storage, Lm was reduced by >2.0 log CFU/cm[superscript]2 in HS and VAC, and could serve as a post-lethality treatment. Alternatively, processors could package turkey jerky in HSOS or NFOS in combination with 30 d ambient storage period as an antimicrobial process. Very little data has been published describing how packaging atmospheres affects Lm survival in RTE meat. The mechanism for Lm reduction under these conditions is not fully understood and additional research is needed.
70

Linking cereal chemistry to nutrition: studies of wheat bran and resistant starch

Brewer, Lauren Renee January 1900 (has links)
Doctor of Philosophy / Department of Grain Science and Industry / Yong-Cheng Shi / Wheat bran is high in dietary fiber. Resistant starch (RS) is considered a source of dietary fiber. Wheat bran and RS have different functional properties and may not have the same nutritional properties. This dissertation covers two areas of importance in cereal chemistry and human nutrition: wheat bran and RS. Wheat bran chemical and physical influence of nutritional components Wheat bran has become a hot topic due to positive nutritional correlations, and industrial /humanitarian needs for healthy ingredients. Evolving wheat bran into a demanded product would impact the industry in a positive way. The overall aim of this research was to understand chemical and structural composition, to provide avenues for wheat bran development as a healthy food ingredient. To achieve this goal, antioxidant properties in dry wheat milling fractions were examined, effects of wheat bran particle size on phytochemical extractability and properties were measured, and substrate fermentation was investigated. It was noted that mixed mill streams, such as mill feed, have antioxidant properties (0.78 mg FAE/g; 1.28 mg/g total antioxidant capacity; 75.21% DPPH inhibition; 278.97 [mu]mol FeSO[subscript]4/g) originating from the bran and germ fractions. Additionally, extraction of reduced particle size whole wheat bran increased measured values for several assays (185.96 [mu]g catechin/g; 36.6 [mu]g/g; 425 [mu]M TE), but did not increase volatile fatty acid production during in vitro rumen fermentation over unmilled bran. RS digestion, glycemic response and human fermentation In vitro action of enzymes on digestion of maize starches differing in amylose contents were studied. The objectives of this study were to investigate the exact role of [alpha]-amylase and amyloglucosidase in determining the digestibility of starch and to understand the mechanism of enzymatic actions on starch granules. Starch digestibility differed (30-60%) without combination of enzymes during in vitro assay. Further investigations utilized human glycemic response and fermentation with consumption of a type 3 RS without dietary fiber (AOAC method 991.43). Blood glucose response provided lower postprandial curves (glycemic index value of 21) and breath hydrogen curves displayed low incidences fermentation (40%) with consumption of the type 3 RS, due to the structure of starch and digestion by enzymatic action.

Page generated in 0.0562 seconds