• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 7
  • 7
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The structure and dynamics of a freshwater benthic food web

Warren, P. H. January 1988 (has links)
No description available.
2

Food webs from natural to production forests: composition, phylogeny and functioning

Peralta, Guadalupe January 2013 (has links)
Habitat loss and fragmentation have been identified as the main drivers of biodiversity loss. These drivers increase the proportion of habitat edges and change the configuration of landscapes. Habitat edges are known to affect ecological patterns and processes, however, is still unknown how these boundaries affect the assemblage of interactions among species within a community, and particularly its structure. Food webs depict not only the composition of the community, but also the feeding links, which represent a measure of energy flow. Therefore, they can inform about the relationships among community diversity, stability, and ecosystem functions. This thesis explores the effects of habitat edges across native vs. managed forests on the food web of a tri-trophic system comprising plants, herbivores (Lepidoptera larvae) and predators (parasitoids). Particularly, it addresses three main objectives: 1) how food webs at habitat edges are assembled from the species and interactions present in the adjoining habitats; 2) how phylogenetic diversity and the coevolutionary signal among interacting species change across a habitat edge gradient; and 3) whether the mechanisms driving community-wide consumption rates and the ecosystem service of pest control are related to structural characteristics of the food webs. The key findings of this thesis are that, despite the composition of species and interactions of native and managed habitats merging at their interface, food-web structure did not arise as a simple combination of its adjacent habitat webs, potentially due to differential responses of organisms to habitat edges. Moreover, beyond taxonomic composition, the phylogenetic diversity and signal of coevolution among interacting species also change between habitat types, even though this did not translate to changes in consumption rates. Consumption rates and their stability increased with complementarity and redundancy in resource-use among predators. This reflects how environmental changes such as habitat fragmentation can have an effect beyond composition per se, affecting the assemblage of species interactions and even potentially interfering with natural evolutionary processes. Therefore, using interaction-network approaches for determining the impacts of changes may shed light on the underlying mechanisms driving such changes, and help to develop landscape management plans that reduce negative effects on species assemblages.
3

Assessing the Ecological Implications of the Altered Flow and Sediment Regimes of the Rio Grande Along the West Texas-Mexico Border

Blythe, Demitra E. 01 December 2018 (has links)
Large, exotic (those whose headwaters are in distant places) rivers are some of the most unique and diverse ecosystems on earth. Because they often flow through a multitude of biomes and climates, their waters are a vital resource not only for the organisms that inhabit these rivers, but for human societies as well. Thus, large rivers, like the Rio Grande, that flow through arid and agricultural regions are highly regulated and diverted. Regulation and dewatering upset a river’s natural flow regime (e.g., magnitude, duration, timing of large flood events), subsequently impacting the river’s ability to transport its sediment supply, and eventually perturbing a river into either sediment surplus or deficit. The combination of altered flow and sediment regimes influence the availability of habitat essential for the survival and viability of aquatic organisms, such as fish and invertebrates. In addition, increased deposition of sediment creates areas suitable for invasive riparian vegetation to establish, likely affecting habitat complexity and increasing the abundance of leaf litter deposited into the river. The altered flow and sediment regimes, in combination with invasive riparian vegetation, culminate and eventually affect the food resources and aquatic communities present in a river ecosystem. Most often, the links between the physical perturbations to a system with the biological factors are poorly understood. In this study, we use distinct segments of the Rio Grande along the US-Mexico border to compare areas with greater and lower habitat heterogeneity, water quality, and invasive riparian species abundance to better understand what physical factors can influence aquatic species such as fish and invertebrate communities. We identify critical limiting factors for the native fish community present, and link the altered flow and sediment regimes with the aquatic ecological template of the Rio Grande.
4

Allometric structure and topology of food webs: Energetic constraints conserve food-web structure across ecosystems and space

Digel, Christoph 24 April 2014 (has links)
No description available.
5

Comparing hypotheses proposed by two conceptual models for stream ecology

Collins, Sean E. 27 October 2014 (has links)
No description available.
6

In Light of Energy: Influences of Light Pollution on Linked Stream-Riparian Invertebrate Communities

Meyer, Lars Alan 30 August 2012 (has links)
No description available.
7

Des écosystèmes naturellement stressés sous menace anthropique : réponses de la faune des plages de sable macrotidales aux marées vertes / Dynamic ecosystems under anthropogenic stress : how does macrotidal sandy beach fauna respond to green tides ?

Quillien, Nolwenn 20 May 2016 (has links)
Les plages de sable sont des écosystèmes dynamiques couvrant 70% des côtes mondiales. Ces systèmes abritent un cortège spécifique unique et assurent des fonctions essentielles de nourricerie, de nurserie et d’épuration des eaux. Or à proximité des côtes, la population humaine est en développement constant ce qui accroît les multiples pressions d’origine anthropique sur les écosystèmes côtiers. L’apport en excès de nutriments constitue une menace majeure qui peut se traduire par le développement d’importantes biomasses de macroalgues opportunistes (eutrophisation). La fréquence et l’intensité de ces blooms, communément formés de chlorophycées à court cycle de vie (ulves) et appelés marées vertes (MV), s'amplifient sur les côtes françaises et dans le Monde menaçant le fonctionnement de systèmes prépondérants et uniques.La plupart des études visant à déterminer les effets des MV sur la structure et le fonctionnement d’écosystèmes sédimentaires ont été conduites dans des environnements abrités, micro- ou atidaux. Cette problématique est restée presqu’inexplorée dans des écosystèmes plus dynamiques (systèmes ouverts et macrotidaux) en raison des difficultés de mise en place d’échantillonnage et de détection des effets de stress d’origine anthropique, inhérentes à la variabilité de ces systèmes. Cette thèse a donc eu pour objectif principal de combler ce manque et produire des connaissances en étudiant les réponses in situ des communautés benthiques de plages de sable fin macrotidales en présence ou non de MV. Quatre études ont été menées à différentes échelles spatio-temporelles et en considérant différents compartiments biologiques pour répondre à cette question générale.Ce travail de thèse montre qu’à l’échelle de la région Bretagne (variabilité intégrée sur 2700km de côtes et 7 ans) les communautés benthiques d’écosystèmes dynamiques sont modifiées significativement et de manière conservative par la présence de MV. Ce travail démontre aussi que les marées vertes impactent différemment la faune benthique en fonction du type d’habitat (plages semi-exposées vs. exposées), de la profondeur (mediolittoral vs. infralittoral), et du compartiment biologique (macrofaune benthique vs. juvéniles de poissons plats). Ces comparaisons ont permis d’identifier la faune benthique de médiolittoral inférieur des plages exposées comme étant le système le plus affecté par les MV. L’étude des variations à fine échelle spatio-temporelle de ce dernier montre que les caractéristiques faunistiques (uni- et multi-variées) sont modifiées le long d’un gradient de couverture d’algues vertes. Par exemple, la β-diversité décroît significativement le long de ce gradient. Afin d’explorer les processus pouvant expliquer ces modifications, et déterminer si ces changements ont des répercussions sur le fonctionnement de l’écosystème « plage de sable », les effets de l’accumulation d’ulves sur le réseau trophique à différent(e)s niveaux/échelles ont été mesurés. Les résultats de cette étude montrent qu’une importante biomasse d’ulves induit un changement de la structure entière du réseau trophique et une modification importante du fonctionnement trophique des plages. Les expérimentations menées au cours de cette thèse montrent que les changements observés sont induits par des effets directs (consommation de débris d’ulves) et indirects (modifications d’autres sources de nourriture) de la présence des MV.Cette thèse propose un cadre de travail visant à mieux détecter les effets de stress anthropiques sur la structure et le fonctionnement d’écosystèmes dynamiques. Dans un contexte de changement global forçant les écosystèmes à faire face à de multiples stress, cette approche pourrait se révéler particulièrement utile pour démêler, comprendre et prédire les effets de perturbations induites par les activités humaines sur le fonctionnement des écosystèmes et constituer une aide à la gestion de ces environnements particuliers. / Highly dynamic systems, often considered as resilient systems, are characterised by abiotic and biotic processes under continuous and strong changes in space and time. Because of this variability, the detection of overlapping anthropogenic stress is challenging. Coastal areas harbour dynamic ecosystems in the for of open sandy beaches, which cover the vast majority of the world’s ice-free coastline. These ecosystems are currently threatened by increasing human-induced pressure, among which mass-development of opportunistic macroalgae (mainly composed of Chlorophyta, so called green tides), resulting from the eutrophication of coastal waters. The ecological impact of opportunistic macroalgal blooms (green tides, and blooms formed by other opportunistic taxa), has long been evaluated within sheltered and non-tidal ecosystems. Little is known, however, on how more dynamic ecosystems, such as open macrotidal sandy beaches, respond to such stress. This thesis assesses the effects of anthropogenic stress on the structure and the functioning of highly dynamic ecosystems using sandy beaches impacted by green tides as a study case. The thesis is based on four field studies, which analyse natural sandy sediment benthic community dynamics over several temporal (from month to multi-year) and spatial (from local to regional) scales. In this thesis, I report long-lasting responses of sandy beach benthic invertebrate communities to green tides, across thousands of kilometres and over seven years; and highlight more pronounced responses of zoobenthos living in exposed sandy beaches compared to semi-exposed sands. Within exposed sandy sediments, and across a vertical scale (from inshore to nearshore sandy habitats), I also demonstrate that the effects of the presence of algal mats on intertidal benthic invertebrate communities is more pronounced than that on subtidal benthic invertebrate assemblages, but also than on flatfish communities. Focussing on small-scale variations in the most affected faunal group (i.e. benthic invertebrates living at low shore), this thesis reveals a decrease in overall beta-diversity along a eutrophication-gradient manifested in the form of green tides, as well as the increasing importance of biological variables in explaining ecological variability of sandy beach macrobenthic assemblages along the same gradient. To illustrate the processes associated with the structural shifts observed where green tides occurred, I investigated the effects of high biomasses of opportunistic macroalgae (Ulva spp.) on the trophic structure and functioning of sandy beaches. This work reveals a progressive simplification of sandy beach food web structure and a modification of energy pathways over time, through direct and indirect effects of Ulva mats on several trophic levels. Through this thesis I demonstrate that highly dynamic systems respond differently (e.g. shift in δ13C, not in δ15N) and more subtly (e.g. no mass-mortality in benthos was found) to anthropogenic stress compared to what has been previously shown within more sheltered and non-tidal systems. Obtaining these results would not have been possible without the approach used through this work; I thus present a framework coupling field investigations with analytical approaches to describe shifts in highly variable ecosystems under human-induced stress.

Page generated in 0.0863 seconds