• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 7
  • 3
  • 2
  • 1
  • Tagged with
  • 38
  • 38
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Row crop environments provide an all-you-can-eat buffet and pesticide exposure to foraging honey bees

Silliman, Mary Rachel 03 June 2021 (has links)
The western honey bee, Apis mellifera, provide invaluable economic and ecological services while simultaneously facing stressors that may compromise their health. For example, agricultural landscapes, such as a row crop system, are necessary for our food production, but they may cause poor nutrition in bees from a lack of available nectar and pollen. Row crops are largely wind or self-pollinated, and while previous studies have focused on the impact of bees to row crops, fewer studies have examined the reciprocal relationship of the row crops on honey bees. Here we investigated the foraging dynamics of honey bees in a row crop environment. We decoded, mapped, and analyzed 3460 waggle dances, which communicate the location of where bees collected food, for two full foraging seasons (April – October, 2018-2019), and concurrently collected pollen from returning foragers. We found that bees foraged mostly locally (< 2 km) throughout the season. The shortest communicated median distances (0.48 and 0.32 km), indicating abundant food availability, occurred in July in both years, which was when our row crops were in full bloom. We determined, by plotting and analyzing the communicated locations, that most mid-summer foraging was in row crops, with at least 40% of honey bee recruitment dances indicating either cotton or soybean fields. Bees also largely foraged for nectar when visiting row crop fields, only returning to the hive with Glycine spp. pollen, and foraging on nearby trees and weeds for pollen. Foragers were exposed to thirty-five different pesticides throughout the foraging season, based on pesticide residues in collected pollen. Overall, row crop fields are contributing a surprising majority of mid-summer forage to honey bee hives and suggests that similar agricultural landscapes may also provide abundant, mid-summer forage opportunities for honey bees, however, at the risk of pesticide exposure. / Master of Science in Life Sciences / Declines in the number of honey bee hives have been observed in the United States and western Europe throughout the last century, driven by environmental stressors such as poor nutrition caused by anthropogenic landscape change and pesticide exposure. Agricultural landscapes, for example, contain monocultures and often necessitate pesticide use, which may be detrimental to bee health. Because of these effects, it is necessary to understand how honey bees forage in these systems and what potential health risks they face. We investigated honey bees foraging dynamics in a row crop environment, observing honey bee waggle dance recruitment behavior and gathering forager-collected pollen to better understand when, where, and what honey bees forage on throughout the season (April – October). We found that bees largely foraged near the hive throughout the season, indicating that sufficient resources were available, particularly in July when crops were in full bloom. During full bloom bees considerably foraged in cotton and soybean fields. We found that bees collected minimal row crop pollen, apart from soybean pollen, largely foraging on trees and flowering weeds for pollen. Through pollen foraging bees were exposed to thirty-five pesticides, ranging in toxicity and mode of action. Overall, honey bees foraging in a row crop system foraged substantially in row crop fields during the mid-summer. Row crops systems may be able to provide abundant forage during the mid-summer, but could come at the risk of exposure to pesticides.
12

Selective Utilization of Microhabitats by Web-building Spiders

Welch, Kelton D. 01 January 2013 (has links)
Natural enemies are members of complex ecological communities, and their ability to contribute to the biological control of pest organisms is strongly influenced by a convoluted network of ecological interactions with many other organisms within these communities. Researchers must develop an understanding of the mechanisms that shape trophic webs to predict and promote top-down effects of predators. The behavior of predators can have a strong influence on their potential as biological control agents. Web-building spiders are a useful example organism for the study of natural enemy behavior because of the experimentally tractable nature of their foraging behavior. Specifically, patterns in microhabitat utilization and web construction by spiders provide insights into foraging behavior and pest-suppression potential. In field collections, spiders were found to utilize microhabitats in a species-specific manner. Molecular gut-content analysis and a mathematical model showed that two spiders belonging to different web-building guilds differed in their dependence on microhabitat-specific prey activity-densities. In particular, the sheet-weaving guild constructed webs in microhabitats with the highest densities of springtails (Collembola). High dependence on this non-pest prey also correlated with evidence of increased intraspecific competition, and implies a potential negative effect of springtails on the consumption of pest insects, such as aphids. In laboratory two-choice assays, sheet-weaving spiders selected microhabitats and constructed webs in a flexible, stepwise manner, which allowed spiders to regulate their investment of silk resources to match the profitability of the microhabitat. Spiders also exhibited prey-specific shifts in foraging behavior, constructing webs in the presence of mobile, non-pest springtails, but utilizing active foraging tactics in the presence of sedentary, pest aphids. However, in factorial no-choice assays, pest-consumption rates were not significantly affected by the presence of non-pest springtails, indicating that prey-specific foraging-mode shifts are compatible with biological control. From these results, it is clear that the flexible foraging behavior of web-building spiders has a strong influence on their roles in ecological communities and their position within food webs. This dissertation highlights the importance of understanding the nuances of natural-enemy behavior for properly assessing and promoting biological control services.
13

Ecological and anthropogenic constraints on waterbirds of the Forth Estuary : population and behavioural responses to disturbance

Dwyer, Ross Gordon January 2010 (has links)
Disturbance from engineering works is an increasing problem in terrestrial and marine ecosystems throughout the world. Many reported declines in population size, breeding success and body condition have been diagnosed as the result of anthropogenic disturbance, however little is known about the effect of long-term disturbance from large-scale engineering works. Understanding the mechanisms by which animals respond to anthropogenic activities is fundamental to explaining interactions, and resolving potential conflicts between humans and wildlife. This thesis focuses on the factors affecting the habitat use and foraging decisions in wintering shorebirds and wildfowl. The first half of this thesis considers the direct and indirect impacts on waterbirds of a major engineering project in central Scotland; construction of the new Clackmannanshire Bridge at Kincardine-on-Forth. For individual bird species in close proximity to the bridge site, round-the-clock construction work had consequences ranging from neutral to considerably negative. Cormorant Phalacrocorax carbo declined in the area, probably as a result of the disturbance of an important low tide roost. Redshank Tringa totanus, previously abundant in the prey-rich areas adjacent to the construction site, were displaced into poorer areas for most of the construction period; where they may also have suffered from increased interference competition and elevated risk from raptorial predators. Some positive effects of industrial development were also revealed; radio-transmitters combined with tilt-switch posture sensors indicate that Redshank were able to capitalise on the improved nocturnal visibility in areas around Grangemouth docks to assist with foraging and predator detection. Evidence is presented that birds switched foraging strategy (from sight to touch feeding) depending on ambient light levels; whereby artificial light was used in a similar manner to moonlight to assist with prey detection. Redshank also avoided riverine areas at night that were used frequently by day, probably in response to an elevated threat from nocturnal predators. As the predator landscape changes from day into night, birds adopt different strategies to minimise the risk from nocturnal predators. It is clearly important, therefore, that information on nocturnal distributions is available to inform decisions on site management, especially where anthropogenic activity continues throughout the diel cycle. Behavioural decisions were shown to vary widely within a species depending on individual state, metabolic demands and previous exposure to human disturbance. Prey resources were shown to change dramatically over the course of a winter. In response to this decline, the home range of Redshank contracted over a winter season. Similarly, animals responded less and took greater risks in response to experimental disturbance events later in the winter than earlier in the winter, and on days when the temperature was lower. This effect was strongest for individuals occupying heavily disturbed areas, which were possibly already compensating for lost feeding time and a negative energy balance. The results were consistent with the hypothesis that those individuals that respond most obviously to human disturbance were those least likely to suffer fitness consequences. This is the opposite from what is commonly assumed when behaviour is used as an index of disturbance impacts, most notably in the use of flush distance in the design of wildlife buffer zones. In conclusion, this study demonstrated various negative impacts of disturbance, including local displacement, due to construction activity on overwintering waterbirds. It also revealed two key, but poorly understood, phenomena relating to mechanisms for coping with anthropogenic disturbance: routine utilisation of artificial light to extend night-time feeding opportunities amongst Redshank and an adaptive flexibility in escape responses across a range of species under varying conditions of risk.
14

From pup to predator : ontogeny of foraging behaviour in grey seal (Halichoerus grypus) pups

Carter, Matt January 2018 (has links)
For young animals, surviving the first year of nutritional independence requires rapid development of effective foraging behaviour before the onset of terminal starvation. Grey seal (Halichoerus grypus) pups are abandoned on the natal colony after a brief (15-21 days) suckling period and must learn to dive and forage without parental instruction. Regional and sex-specific differences in diet and foraging behaviour have been described for adults and juveniles, but the early-life behaviour of pups during the critical first months at sea remains poorly understood. This thesis investigates sources of intrinsic and extrinsic variation in the development of foraging behaviour and resource selection in grey seal pups. The studies presented here feature tracking and dive data collected from 52 recently-weaned pups, tagged at six different breeding colonies in two geographically-distinct regions of the United Kingdom (UK). Original aspects of this thesis include: (Chapter I) a comprehensive review of analytical methods for inferring foraging behaviour from tracking and dive data in pinnipeds; (Chapter II) description and comparison of regional and sex differences in movements and diving characteristics of recently-weaned pups during their first trips at sea; (Chapter III) implementation of a novel generalized hidden Markov modelling (HMM) technique to investigate the development of foraging movement patterns whilst accounting for sources of intrinsic (age, sex) and extrinsic (regional) variation; and (Chapter IV) the first analysis of grey seal pup foraging habitat preference, incorporating behavioural inferences from HMMs and investigating changes in preference through time.
15

Ecology and conservation of the endangered Barton Springs Salamander (Eurycea sosorum)

Gillespie, Jennifer Hayley 06 July 2012 (has links)
Amphibian decline is a major concern worldwide, and a lack of basic ecological and life history information for many species significantly limits our ability to evaluate the degree and possible causes of such declines, and to develop effective conservation strategies for threatened and endangered species. Not only is there a shortage of adequate long-term datasets necessary for robust analyses of population variability, but the elusive nature and obscure microhabitats of many species make it difficult to collect even the most basic natural history data. In a series of observational and experimental studies, I employed both traditional and novel ecological methodologies to examine environmental correlates of temporal population variability, foraging ecology and anti-predator behavior in endangered Barton Springs Salamander (Eurycea sosorum) from Austin (Travis County), Texas. Though headwater springs are typically thought of as habitats with relatively stable environmental conditions, I discovered that E. sosorum population abundance was strongly influenced by periodic extremes of rainfall that affect cycles in spring flow rates, water temperature, and other physico-chemical variables. I also found that population dynamics in E. sosorum are highly consistent with those expected for organisms with a storage effect life-history strategy, in which a few long-lived females capable of high fecundity and prolonged survival in subterranean habitat during adverse environmental conditions may be sufficient for population persistence. In addition, juveniles may use subterranean habitat as a thermal refuge. Using stable isotope analyses and macroinvertebrate prey censuses, I determined that at the population level, adult E. sosorum exhibits high electivity for planarian flatworms (Dugesia sp.). This would not have been detectable using traditional methods of dietary analysis such as stomach or fecal content analysis because Dugesia are soft-bodied animals. Additionally, stable isotope analyses revealed that adult E. sosorum exhibits inter-individual diet variation and is capable of diet switching. Finally, I discovered that anti-predator behavior in E. sosorum is influenced more strongly by visual and bioelectric cues from potential predators, but not olfactory cues. This is the first known demonstration of anti-predatory response mediated only by bioelectric stimuli in an amphibian, and one of very few to observe this phenomenon among aquatic vertebrates. / text
16

The Influence of Land-cover Type and Vegetation on Nocturnal Foraging Activities and Vertebrate Prey Acquisition by Burrowing Owls (Athene cunicularia).

Marsh, Alan J Unknown Date
No description available.
17

Bycatch and foraging ecology of sea turtles in the Eastern Pacific

Kelez Sara, Shaleyla January 2011 (has links)
<p>Sea turtles are long lived marine species that are currently endangered because their life history and population dynamics hinder them from withstanding modern anthropogenic threats. Worldwide, fisheries bycatch in on the major threats to the survival of sea turtles and that is also the case in the Eastern Pacific. To establish regional conservation priorities for the mitigation of bycatch, it is essential to first obtain a comprehensive picture of the regional sea turtle bycatch situation. This comprehensive analysis was lacking for the Eastern Pacific; therefore one component of this dissertation (the first chapter) is focused on delivering a regional bycatch analysis for the Eastern Pacific. A literature review was conducted to obtain numbers of turtles captured, frequencies, bycatch and mortality rates per species and country in trawl, longline, and gillnet fisheries, and to compile results of mitigation measures. Moreover, estimates for current annual capture rates in trawl fisheries were obtained and compared with population numbers. </p><p>This regional bycatch used all the information compiled and synthesized to give conservation priorities at the regional level. The review underlines the high bycatch rates in trawls for Costa Rica, Guatemala, and El Salvador and the detrimental impact that these captures could have specially for hawksbill Eretmochelys imbricata due to its reduced population numbers and for green turtle Chelonia mydas due to its highest mortality rate. It also emphasizes the continuous lack of use of TEDs as a bycatch mitigation measure. In longline fisheries, the review identifies the high bycatch rates in pelagic longline fisheries of Costa Rica, Ecuador, and Nicaragua in a global context but given that olive ridley Lepidochelys olivacea is the most common species captured in these countries, it highlights the capture of loggerhead Caretta caretta and leatherback Dermochelys coriacea off Peru and Chile due to their small population numbers. Bottom longlines have high mortality rates compared with pelagic longlines in the region and the review identifies a need for further research in this area due to the scarce information but high mortality rates. The review also noted that some mitigation measures for pelagic longlines like circle hooks and hooks with appendages could bring improvements in the mitigation of bycatch in longline fisheries in the region, there is still considerable work to be done in technology transfer, sea turtle handling, and estimates of post-release mortality rates. </p><p>For gillnet fisheries, the most important highlight is how little information exists for the region given the high rates of bycatch for sea turtles in this gear. However, the difficulties of studying bycatch in highly dynamic and artisanal fisheries are recognized as the major impediment for this situation. Nevertheless, the high bycatch rates in areas where sea turtles congregate in high numbers like in foraging grounds for loggerhead in Baja California, Mexico and for greens in Paracas and Sechura, Peru, calls for either gear modifications (which has not been that successful), change of gear, or areas closed for gillnets. </p><p>The second half of the dissertation is focused on foraging ecology of oceanic sea turtles in the Southeast Pacific Ocean. Sea turtles in the oceanic stage are the least known stage due to the difficulty of accessing these individuals. However, it is a very important stage in the life cycle and can be critical for the population dynamics of sea turtles as some population models have shown. Therefore, this dissertation is filling a gap in the life cycle of sea turtle populations in the Eastern Pacific. </p><p>To study foraging ecology, we used Stable Isotope Analysis (SIA) of turtle tissues as well as potential prey items from the oceanic realm. SIA is a great tool because it gives an integrated view, from days to weeks, of prey from a consumer tissue. SIA also can be used to link consumers to habitats when elements that have spatial trends are used. In chapter two, we investigate the foraging ecology of three species of sea turtles to compare trophic status and to observe if spatial patterns were shown in the SIA signatures of sea turtles. To our knowledge this is the first study employing SIA to research the ecology of three species of sea turtles from the same time and space. Our results show that spatial patterns in delta15N and delta13C were observed in sea turtle's tissues as correlations with latitude. We also found that loggerhead's signatures differed significantly from green and olive ridleys, especially in terms of delta15N. Loggerheads had higher values of delta15N and also a wider nitrogen trophic niche. Greens and olive ridleys were similar in isotopic nitrogen values but they were significantly different in carbon. When analyzing a smaller group of animals captured in a more restricted area, nitrogen differences were not found which suggests that latitudinal spatial patterns play an important role in the nitrogen signature. On the contrary, carbon signatures still differed among turtles in the restricted area which suggest that the inshore-offshore trend is strong and made us conclude that loggerheads are restricted to oceanic areas but that greens and olive ridleys could be using both coastal and oceanic areas.</p><p>In chapter three, we conduct a mixing model analysis using the Bayesian program SIAR to identify the most important prey items for green, olive ridley, and loggerhead off Peru. Also, we wanted to identify the contribution of longline baits in the diet of oceanic turtles. The analysis was restricted to the central zone of our study area to avoid spatial trends in nitrogen. To use as sources in the model, we collected potential prey items offshore Peru during trips on longline fishing vessels and obtained their stable isotope signatures. Results from our mixing models show that for greens and olive ridleys, crustaceans, mollusks, and coastal Ulva (indicator of coastal prey) were the only important food items. In the case of greens, crustaceans had a very high proportional contribution and due to the fact that nitrogen values of crustaceans were the lowest ones among the sources it seems that greens would be eating in a lower trophic level. The importance of coastal Ulva for greens and olive ridleys is a confirmation of our findings from chapter two where we suggest that these two species could be using oceanic as well as coastal areas. </p><p>Results for loggerheads showed cnidarians, mollusks, mackerel and squid bait as foraging items and highlights the differences among this species and the other two. The lack of importance of coastal Ulva again suggests that loggerheads remain only in oceanic areas off Peru. Moreover, the importance of mackerel and squid, the most common longline baits, suggests this species is the one interacting the most with longline fisheries and that cumulative effect of multiple interactions could have a detrimental effect in this population.</p> / Dissertation
18

Ontogenetic Shifts in Diet and Habitat by Juvenile Green Sea Turtles (Chelonia mydas) along the Middle and Lower Texas Coast

Howell, Lyndsey 2012 August 1900 (has links)
Effective population management of green sea turtles (Chelonia mydas) necessitates understanding the temporal variation in foraging grounds used in ontogenetic stages, and the effect that the assimilated diet within those habitats has on nutritional gain, growth and eventual reproductive output. Texas coastal waters provide foraging grounds critical to meeting the nutritional needs of green turtles during early life history. To characterize temporal shifts in foraging strategy stomach contents combined with stable carbon (delta13C) and nitrogen (delta15N) isotopes of scute tissue were examined across size classes of stranded juvenile green turtles from the middle and lower Texas coast during 2007-2010. Findings from dietary analysis generally corroborated those from stable isotopes in scute samples. Results indicate green sea turtles exhibit multiple shifts in diet and habitat along the Texas coast. Although isotope values in the tissues of some <25 cm SCL turtles signified recent recruitment to jetty habitat, most in this size class exhibited depleted delta13C and enriched delta15N values indicative of oceanic life. Reinforcing oceanic occupancy from stable isotope results was forage material dominated by oceanic items such as Sargassum spp., Scyphozoa spp., and plastic debris. Diet analysis of 25-34.9 cm SCL turtles implied regional differences existed in macroalgae and seagrass consumption. Enriched delta13C and delta15N values in newest scute suggest most turtles inhabited the jetty environment, where macroalgae is the most available forage. A definitive shift by >35 cm SCL turtles to inshore seagrass habitat was revealed by a diet of seagrasses and tissue enriched in delta13C and depleted in delta15N. This is the first study to integrate stomach contents of several green turtle size classes with tissue analysis of stable isotopes. The combination of these techniques provided an assessment of the effectiveness of stable isotope analyses in documenting diet and habitat shifts. Stomach content examination determined the most recent diet consumed within the habitat occupied, whereas stable isotope analysis provided a time-integrated synopsis of diet and habitat shifts. Findings indicate integration of stomach content and stable isotope analysis is highly effective for characterizing habitat use and foraging strategy of ontogenetic-stage green sea turtles.
19

The role of physical oceanography on the distributions and foraging behaviours of marine mammals and seabirds in shelf-seas

Cox, Samantha Lucy January 2016 (has links)
Mid-latitude shelf-seas are highly productive regions that host a rich diversity of animals including large numbers of marine mammals and seabirds. These large vertebrate predators play a crucial role in the functioning of shelf-sea ecosystems. However, the combined effects of multiple anthropogenic stressors are driving unprecedented declines in many of their populations. Mitigating this depends upon effective conservation and integrated ecosystem based approaches to management, which require a comprehensive understanding of the habitat needs of marine predators. The foraging efficiencies of marine predators are closely tied to the availability of a number of oceanographic features. As such, these physical habitats represent critical locations within a species’ range whose preservation and protection should be of high priority. The collection of studies presented in this thesis aims to improve our understanding of the physical oceanographic processes that underlie the at-sea behaviours and distributions of marine mammals and seabirds in coastal and shelf-sea environments. A combination of at-sea boat surveying, animal-borne biologging, satellite remote-sensing, passive acoustics and numerical modelling was used to collect information on the distributions and foraging behaviours of a range of marine predators alongside the bio-physical characteristics of the oceanographic habitats they occupied. These data were then used to (1) examine the use of oceanographic habitats generated around tidal-mixing fronts and coastal topographic structures by a range of piscivorous species including bottlenose dolphins Tursiops truncatus, common dolphins Delphinus delphis, harbour porpoises Phocoena phocoena and northern gannets Morus bassanus, and (2) identify the physical processes underlying their creation. Original aspects of this work include the examination of the fine-scale bio-physical mechanisms that link marine predators to tidal-mixing fronts and coastal tidal-topographic structures. Main findings indicate that offshore habitats around tidal-mixing fronts are used by both common dolphins and northern gannets for foraging. Individuals associated with patches of increased sub-surface primary productivity, which were generated via a bi-weekly cycle of episodic turbulent mixing and stratification following an adjustment in the spatial position of a front with the spring-neap cycle. Moreover, around fronts, the dives of gannets were likely to be short and of a V-shaped strategy (with little active swim phase), which likely reflects an increase in the accessibility and catchability of their prey. In a coastal estuarine system, bottlenose dolphins were shown to associate with predictable downwelling features generated during flood tidal flows that were thought to act as a foraging aid. Together, these findings highlight the fundamental role physical oceanographic processes play in the structuring of marine ecosystems by providing vulnerable marine predators with prosperous and reliable foraging resources that they can exploit. This work has implications for both future studies of marine predator foraging ecology and the management of anthropogenic activities in coastal and shelf-seas.
20

Juvenile Green Turtle (chelonia Mydas) Foraging Ecology:feeding Selectivity And Forage Nutrient Analysis

Gilbert, Eliza 01 January 2005 (has links)
For the endangered green turtle, Chelonia mydas, a fundamental component of recovery and conservation is an understanding of its foraging ecology. Foraging optimality models suggest animals will select resources of high quality over those of low quality. For green turtles, this behavior is important, as sufficient quantities of nutritionally adequate forage items are necessary for growth and reproduction. One intrinsic element in the understanding of green turtle foraging ecology is to identify and document the availability and quality of forage resources preferred by green turtles. The objectives of this study were: 1) determine whether juvenile green turtles showed a feeding preference by comparing prey items in the diet to the availability of those items in the habitat, 2) identify species for which there was selection or avoidance, 3) identify nutritional factors determining selection or avoidance of prey items, and 4) evaluate the nutritional content of the diet. This research was conducted by comparing lavage samples from juvenile green turtles to samples from benthic surveys within the habitat. To determine feeding preference, Ivlev's Electivity Index was used to compare ingested species of algae with those available in the habitat. Nutritional analysis of forage was conducted to identify possible nutrients relating to feeding preference. Juvenile green turtles selectively foraged on Chlorophyta and Rhodophyta. Results indicate that diet selection was based on nutritional content. Both the composite diet and the main diet item, Hypnea spp, had a higher gross energy value, were higher in protein, and lower in fiber than prey items that were avoided. Conservation of green turtles requires effective habitat management, which must be informed by an understanding and evaluation of the habitat. For juvenile green turtles, this study indicates that habitats dominated by Chlorophyta and Rhodophyta may be more important for the health of green turtle populations than habitats dominated by Phaeophyta.

Page generated in 0.08 seconds