Spelling suggestions: "subject:"forecasting bperformance 2analysis"" "subject:"forecasting bperformance 3analysis""
1 |
Enhancing the Efficacy of Predictive Analytical Modeling in Operational Management Decision MakingNajmizadehbaghini, Hossein 08 1900 (has links)
In this work, we focus on enhancing the efficacy of predictive modeling in operational management decision making in two different settings: Essay 1 focuses on demand forecasting for the companies and the second study utilizes longitudinal data to analyze the illicit drug seizure and overdose deaths in the United States. In Essay 1, we utilize an operational system (newsvendor model) to evaluate the forecast method outcome and provide guidelines for forecast method (the exponential smoothing model) performance assessment and judgmental adjustments. To assess the forecast outcome, we consider not only the common forecast error minimization approach but also the profit maximization at the end of the forecast horizon. Including profit in our assessment enables us to determine if error minimization always results in maximum profit. We also look at the different levels of profit margin to analyze their impact on the forecasting method performance. Our study also investigates how different demand patterns influence maximizing the forecasting method performance. Our study shows that the exponential smoothing model family has a better performance in high-profit products, and the rate of decrease in performance versus demand uncertainty is higher in a stationary demand environment.In the second essay, we focus on illicit drug overdose death rate. Illicit drug overdose deaths are the leading cause of injury death in the United States. In 2017, overdose death reached the highest ever recorded level (70,237), and statistics show that it is a growing problem. The age adjusted rate of drug overdose deaths in 2017 (21.7 per 100,000) is 9.6% higher than the rate in 2016 (19.8 per 100,000) (U. S. Drug Enforcement Administration, 2018, p. V). Also, Marijuana consumption among youth has increased since 2009. The magnitude of the illegal drug trade and its resulting problems have led the government to produce large and comprehensive datasets on a variety of phenomena relating to illicit drugs. In this study, we utilize these datasets to examine how marijuana usage among youth influence excessive drug usage. We measure excessive drug usage in terms of drug overdose death rate per state. Our study shows that illegal marijuana consumption increases excessive drug use. Also, we analyze the pattern of most frequently seized illicit drugs and compare it with drugs that are most frequently involved in a drug overdose death. We further our analysis to study seizure patterns across layers of heroin and cocaine supply chain across states. This analysis reveals that most active layers of the heroin supply chain in the American market are retailers and wholesalers, while multi-kilo traffickers are the most active players in the cocaine supply chain. In summary, the studies in this dissertation explore the use of analytical, descriptive, and predictive models to detect patterns to improve efficacy and initiate better operational management decision making.
|
Page generated in 0.124 seconds