• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 20
  • 16
  • 15
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 1
  • 1
  • Tagged with
  • 206
  • 206
  • 58
  • 41
  • 20
  • 18
  • 17
  • 17
  • 15
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Particle filter based mosaicking for forest fire tracking /

Bradley, Justin Mathew, January 2007 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Electrical and Computer Engineering, 2007. / Includes bibliographical references (p. 63-65).
122

Analyzing multiple worldviews of forestry : local perceptions of the 1994 fires on the Wenatchee National Forest, Washington /

Findley, Angela J. January 1996 (has links)
Thesis (M.S.)--Oregon State University, 1996. / Typescript (photocopy). Includes bibliographical references (leaves 141-145). Also available on the World Wide Web.
123

Post-fire recreation management in the Mt. Jefferson Wilderness /

Brown, Ryan N. K. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2007. / Printout. Includes bibliographical references (leaves 117-124). Also available on the World Wide Web.
124

Natural regeneration potential of Pterocarpus angolensis (Kiaat Tree) in the dry forests of northern Namibia

Kayofa, Fillemon 04 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Pterocarpus angolensis is one of the timber tree species that regenerates naturally in the dry forest of Namibia, mainly assisted by the influence of forest fires. Tree development goes through a prolonged suffrutex stage to reach the sapling stage and then, finally, the bole tree stage. This study focused on assessing the main factors facilitating the development of Pterocarpus angolensis seedlings through the suffrutex stage to the sapling stage in Namibia dry forests. To achieve the study objectives three study locations (Okongo and Ncumcara Community Forests and Caprivi State Forest) were selected, representing a rainfall gradient. Within each study location, two different fire history treatments (recently burnt (RB) and recently unburnt (RU)) were selected, and four plots were randomly selected from each fire history treatment. Face to face individual interviews was conducted with community members surrounding the three forests to obtain indigenous knowledge information about Pterocarpus angolensis tree development. Seedlings and saplings found in all plots were counted and measured (tree height and diameter at breast height (DBH)) while trees more than 3 m high were only counted and measured for DBH. Laboratory analysis was performed to determine basic soil texture and nutrient status. In addition, destructive sampling was done on individual trees in the seedling and sapling stages at each study location. The destructive samples allowed for estimation of biomass in above and below ground components, determination of carbohydrate storage in the taproots and estimation of tree age by counting growth rings on the neck disc of the taproot sample. These measures could shed light on the tree development through the suffrutex stage. The main agents causing Pterocarpus angolensis tree damage and stand disturbances observed are drought, fires, insects, diseases, temperature, lightning, wind, animals and humans. Forest fires were found to be one of the major disturbances in all the study locations, particularly damaging to seedlings when fire intensity is high. Likewise, the most important factors influencing the tree development from seedlings to sapling and sapling to bole tree stages are soil water, soil fertility, plant competition, sunlight and fires. Through counting growth rings of taproot neck discs, it is estimated that the ages of seedlings most commonly range from 5 to 12 years in the dry forests of Okongo, Ncumcara and Caprivi. The soil texture in the three forests is dominated by sand, with the soil reaction usually being moderately acidic while the soils have low levels of organic carbon, phosphorus and exchangeable base cations. This study revealed that Caprivi State Forest (location with the highest rainfall) has the highest stand density followed by Okongo Community Forest and Ncumcara Community Forest with the lowest. Trees were grouped into different DBH and height classes. The highest numbers of trees are found in DBH class 0 – 10 cm and in height class 0.6 – 1.0 m at Okongo Community Forest but at Ncumcara and Caprivi many of the trees are in height class 1.1 – 1.5 m. The mean DBH difference is significant between locations but not significant between fire history treatments. A higher abundance of mature trees are found at Okongo Community Forest while a greater abundance of saplings occur at Ncumcara Community Forest which shows a significant difference between study locations. Seedling abundance is the same across study locations and fire history treatments. The difference in stand structure between study locations appears to be strongly influenced by different management regimes on the three locations. A majority of respondents from all the study locations alleged soil water followed by soil fertility as the main influential factors to Pterocarpus angolensis development. Again, most of the respondents revealed that seedling takes 4 – 7 years to reach sapling stage and their main environmental disturbance is fire. Tree cutting by members of the community was also perceived by the respondents as an important non-environmental disturbance. The most abundant tree development stage perceived by respondents was mature trees while seedlings rated the sparsest stage. Based on the respondents no silvicultural practices are performed to promote Pterocarpus angolensis growth. It follows that the Kiaat trees are currently growing without human intervention that might enhance their development. A combination of social survey (interview) and ecological survey provided reliable information on ecological processes. A weak positive significant correlation relationship existed between shoot mass (aboveground biomass) and taproot mass (belowground biomass), meaning when the taproot mass increases the shoot mass also increases. Analysis of non-structural carbohydrates (NSC) storage in taproots showed that both sugar and starch contents in the taproots could facilitate the survival of the tree during suffrutex stages and its rapid growth thereafter. Based on this study Pterocarpus angolensis regeneration in these three dry forests is poor because seedling abundance is the lowest compared to saplings and mature trees. These study findings can be used as the basis for further studies to predict Pterocarpus angolensis natural regeneration in the dry forests, as well as input when management regimes are being developed for the dry forests of North Namibia. / AFRIKAANSE OPSOMMING: Pterocarpus angolensis (Kiaat) is een van die boomspesies wat natuurlik verjong in die droë bosveld van Namibië, met die hulp van bosbrande. Die boom ontwikkel deur ʼn lang semi-struik stadium waartydens die boompies as saailinge bekendstaan. Daarna ontwikkel dit deur die jongboom stadium tot dit uiteindelik die kroon stadium bereik. Hierdie studie fokus op die faktore bydra tot die ontwikkeling van Pterocarpus angolensis van die semi-struik stadium na die jongboom stadium in die droë bosveld van Namibië. Om die doelstellings van die tesis te bereik is drie studiegebiede gekies langs ʼn reënvalgradiënt (naamlik Okongo en Ncumcara gemeenskapsbosse asook Caprivi Staatsbos). Binne elke studiegebied is twee behandelings met verskillende brandgeskiedenis gekies (gebrand of nie-gebrand in die onlangse verlede). Vier persele is ewekansig uit elk van hierdie behandelings gekies vir eksperimentering. Persoonlike onderhoude is gevoer met gemeenskapslede wat in die omgewing woon ten einde inheemse kennis en inligting te versamel oor die ontwikkeling van die jong Pterocarpus angolensis bome. Alle saailinge en jongbome wat voorkom in die persele is getel en gemeet (boomhoogte en deursnee op borshoogte (DBH)) terwyl bome wat hoër as 3 m is, slegs getel en vir DBH gemeet is. Laboratoriumtoetse is gedoen op grondmonsters ten einde ‘n basiese beskrywing van die grondtekstuur en voedingstofstatus te verkry. Verder is destruktiewe bemonstering toegepas op bome in beide die saailing en jongboom stadium op elke studiegebied. Hierdie bemonstering het dit moontlik gemaak om bogrondse en ondergrondse biomassa te skat, om die opberging van koolhidrate in die penwortels te bepaal, en ook om die boom ouderdom te skat vanaf jaarringe in die nek van die penwortel monster. Hierdie metings kon lig werp op die boomontwikkeling deur die semi-struik stadium. Die faktore wat skade aan Pterocarpus angolensis bome veroorsaak asook versteuring van die opstande waarin die bome voorkom is droogte, brande, insekte, siektes, temperatuur uiterstes, weerlig, wind, diere en mense. Die bevindinge dui op bosbrande as een van die belangrikste versteuringsfaktor in al drie studiegebiede; dit is veral skadelik vir saailinge in die semi-struik stadium wanneer die vuurintensiteit hoog is. Die faktore wat die boomontwikkeling van saailing, na jongboom en kroonstadium beïnvloed is hoofsaaklik grondwater, grondvrugbaarheid, plantkompetisie, sonlig en brande. Die ouderdom van saailinge (bepaal vanaf jaarring tellings in die nek van penwortel monsters) van die meeste saailinge én jongbome is na raming tussen 5 en 12 jaar vir die droë bosse in die studiegebiede van Okongo, Ncumcara en Caprivi. Die grondtekstuur van hierdie studie se drie bosgebiede is hoofsaaklik sanderig, met ’n effens suur grondreaksie terwyl die gronde lae vlakke van organiese koolstof, fosfor, en uitruilbare basiese katione bevat. Die studie het aangedui dat Caprivi staatsbos (met die hoogste reënval) die digste opstande huisves, gevolg deur Okongo en dan Ncumcara gemeenskapsbos, met die laagste digtheid. Bome is gegroepeer in verskillende DBH en hoogte klasse. Die meeste bome kom voor in die DBH klas van 0-10 cm en in die hoogteklas van 0.6 – 1.0 m by Okongo, maar by Ncumcara en Caprivi is daar meer bome in die hoogteklas van 1.1 - 1.5 m. Die gemiddelde DBH verskil is betekenisvol tussen studiegebiede, maar is nie betekenisvol verskillend tussen brandgeskiedenis behandelings nie. ’n Hoër voorkoms van volwasse bome is by Okongo aangetref, terwyl ’n hoër voorkoms van jongbome by Ncumcara waargeneem is, en hierdie verskil was statisties betekenisvol. Die voorkoms van saailinge is soortgelyk oor alle studiegebiede en brandgeskiedenis behandelings heen. Die verskil in die struktuur van die opstande op die drie studiegebiede word skynbaar sterk beïnvloed deur verskillende bestuurspraktyke wat in elke gebied toegepas word. Die meerderheid van respondente van al drie studiegebiede beweer dat grondwater, gevolg deur grondvrugbaarheid die belangrikste faktore is wat P. angolensis ontwikkeling beïnvloed. Meeste van die respondente onthul dat saailinge 4 tot 7 jaar neem om die jongboom stadium te bereik en dat die belangrikste versteuringsagent bosbrande is. ʼn Belangrike nie-omgewingsfaktor wat verantwoordelik is vir versteuring in die bosse is mense wat bome, lote en/of takke afsaag. Respondente is van mening dat volwasse bome die grootteklas met die mees algemene voorkoms is, terwyl saailinge die skaarsste grootteklas uitmaak. Die respondente het aangedui dat geen boskultuurpraktyke toegepas word om die groei van P. angolensis aan te help nie. Die gevolgtrekking is dus dat die Kiaatbome tans groei sonder menslike ingryping om hul ontwikkeling te verbeter. Die kombinasie van persoonlike onderhoude en ʼn ekologiese opnames het betroubare inligting rakende ekologiese prosesse opgelewer. ’n Swak positiewe, maar betekenisvolle korrelasie bestaan tussen die massa van die bogrondse lote en die penwortelmassa, wat beteken dat die lote se massa toeneem met toenemende wortelmassa. Analise van opgebergde nie-strukturele koolhidraatreserwes in die penwortel toon dat beide suiker- én styselinhoud in die penwortels die oorlewing van die boom in die struikstadium aanhelp, asook sy vinnige groei na die struikstadium. Die feit dat die saailinge minder volop is as jongbome en volwasse bome in hierdie studie dui aan dat verjonging van Pterocarpus angolensis in hierdie droë bosse maar swak is. Die bevindinge van die studie bevat inligting wat gebruik kans word (a) as die grondslag van verdere studies op die natuurlike verjonging van Pterocarpus angolensis in droë bosse, en (b) as inset wanneer bestuursaanbevelings vir die droë bosse van Noord Namibië ontwikkel word.
125

Dinâmica da comunidade arbórea em uma floresta estacional semidecidual sob queimadas recorrentes / Tree community dynamics in a semideciduous forest fires under recurrent

PEIXOTO, Karine da Silva 05 March 2010 (has links)
Made available in DSpace on 2014-07-29T16:21:15Z (GMT). No. of bitstreams: 1 Dissertacao Karine Peixoto.pdf: 442940 bytes, checksum: 48c053e39f9bd13d7c629c7894cfce37 (MD5) Previous issue date: 2010-03-05 / The effects of fire on tree mortality can change the floristic and structure of forest depending on intensity, frequencies and duration of burnt. Besides should play a fundamental role in vegetation dynamics. Areas of semideciduous forest subject to different frequencies of fire were monitored: 0.9 ha burned in 2007 (Q1) and 0.9 ha in 2005 and 2007 (Q2). The dynamics was based the average interval of 2.03 years between T1 (outubro/2006-maio/2007) and T2 (March/2009), including individuals with PAP ≥ 15 cm. Diversity (H ) and species richness (estimated by Jackknife) were higher in Q2, both at T1 and T2. The decrease on tree density between surveys was significant for Q1 and Q2. The proportion of deaths was higher in Q1. With exception of change (based number of individuals) that was higher in Q1, there were no differences in the dynamic parameters between Q1 and Q2 considering both the number of individuals and basal area. The increase of diversity in Q2 may be partially explained by the hypothesis of intermediate disturbance. On the other hand, despite the recruitment and mortality did not differ between Q1 and Q2, the high turnover rates independent of fire frequency suggests future changes in forest if the fire continuing frequent in the area. / Os efeitos do fogo sobre a mortalidade de árvores podem alterar a composição e estrutura da vegetação, dependendo da intensidade, freqüência e duração das queimadas. Nós monitoramos áreas de floresta sujeitas à diferentes freqüências de fogo: 0,9 ha queimaram em 2007 (Q1) e 0,9 ha em 2005 e 2007 (Q2). A dinâmica foi referente ao intervalo médio de 2,03 anos entre T1 (outubro/2006-maio/2007) e T2 (março/2009), considerando indivíduos com PAP ≥ 15 cm. A diversidade (H ) e riqueza de espécies (estimada por Jackknife) foram maiores em Q2, nos dois levantamentos (T1e T2). Ocorreu a diminuição na densidade em Q1 e Q2. No entanto, a proporção de indivíduos que morreram foi maior em Q1. Os parâmetros da dinâmica baseados no número de indivíduos e na área basal não diferiram entre Q1 e Q2, exceto mudança (por número de indivíduos) que foi maior em Q1. O aumento na diversidade na área sujeita a maior freqüência de queimadas pode ser explicada pela hipótese de distúrbio intermediário. Por outro lado, apesar da mortalidade e recrutamento não terem diferido entre Q1 e Q2, as altas taxas de mudanças, independentes da freqüência, do fogo sugerem futuras mudanças florísticas e estruturais na floresta caso as queimadas continuem ocorrendo na área.
126

Simulação numérica de incêndios de superfície na Região Amazônica com modelo de turbulência de grandes estruturas. / Numerical simulation of surface fires in the Amazon region with large structures turbulence model.

Paulo Roberto Bufacchi Mendes 22 November 2013 (has links)
O incêndio florestal é uma complexa combinação da energia liberada na forma de calor devido à combustão dos produtos oriundos da pirólise da vegetação e o transporte dessa energia para o ar e para a vegetação à sua volta. O primeiro é o domínio da química e ocorre na escala de moléculas e o segundo é o domínio da física e ocorre em escalas de até quilômetros. É a interação desses processos sobre uma ampla gama de escalas temporais e espaciais envolvidas no incêndio florestal que faz a modelagem do seu comportamento uma tarefa tão difícil. A propagação do incêndio através de vegetação rasteira e folhas mortas foi simulada numericamente usando a formulação física do WFDS. A abordagem utilizada foi tridimensional e transiente, e baseada em uma descrição dos fenômenos físicos que contribuem para a propagação de um incêndio de superfície através de uma camada de combustível. Neste cenário de incêndio, existem duas regiões: vegetação e ar, cada uma com suas propriedades físicas e químicas e, embora elas precisem ser integradas no mecanismo de solução, há diferentes fenômenos que ocorrem em cada uma. Na região de vegetação, a abordagem é representá-la como partículas submalha cercadas de ar. O caráter heterogêneo da vegetação, como sua natureza, folhagens, pequenos galhos, etc. foi levado em conta usando propriedades físicas médias características da floresta amazônica. Os fenômenos na região de vegetação são a evaporação da sua umidade, a pirólise e a transferência de calor por radiação e por convecção. Na região do ar, a combustão com chama ocorre em um ambiente turbulento, onde as transferências de calor por radiação e por convecção desempenham um papel significativo. Para incorporar a radiação dos gases de combustão, o modelo físico emprega o método de volumes finitos, que resolve a equação de transferência de calor por radiação como uma equação de transporte para um número finito de discretos ângulos sólidos, e que pode ser usado em uma ampla faixa de espessuras óticas e meios participantes. A combustão turbulenta para a fase gasosa é modelada com base no modelo Eddy Dissipation Concept (EDC). O modelo de combustão turbulenta adota a hipótese de reação química infinitamente rápida entre o combustível e o ar e é controlado apenas pela velocidade de mistura desses reagentes. Esse modelo representa bem a física de incêndios em ambientes ventilados, como é o caso dos incêndios florestais. Para incluir os efeitos do transporte turbulento é utilizado o método Large Eddy Simulation (LES), que calcula explicitamente as grandes estruturas turbulentas, mas trata a dissipação e a cascata inercial em escalas menores usando aproximações na escala submalha. As regiões de vegetação e ar trocam massa e energia. O comportamento da mistura gasosa resultante da degradação térmica da vegetação e das reações de combustão é regido pelas equações de Navier-Stokes. As equações que regem os modelos físicos são formuladas como equações diferenciais parciais que são resolvidas por métodos numéricos. O método utilizado para discretização das equações é o método de diferenças finitas em malha deslocada. O modelo numérico utilizado resolve as equações de Navier-Stokes para fluidos compressíveis usando o filtro de Favre. A dissipação de energia cinética é obtida através de um fechamento simples para a tensão turbulenta: o modelo de coeficiente constante de Deardorff. O transporte turbulento de energia e massa é contabilizado pelo uso, respectivamente, de números de Prandtl e de Schmidt turbulentos constantes. Os resultados das simulações do modelo físico descrito foram comparados aos dados experimentais obtidos em campo para a propagação do incêndio na floresta amazônica. Apesar da idealização das condições de combustível, vento e as incertezas dos dados experimentais, as previsões do modelo estão na mesma ordem de grandeza dos experimentos. As taxas de propagação do incêndio experimentais variam de 0,12 +/-0,06 a 0,35+/-0,07 m/min. Mesmo considerando-se o desvio padrão da taxa de propagação do incêndio experimental, os valores das taxas simuladas ficaram dentro do erro experimental somente em dois de sete casos. As simulações mostraram que os parâmetros importantes para o modelo são a área superficial por volume da vegetação, sua massa específica aparente e sua umidade. Como o coeficiente de absorção por radiação é função direta da massa específica aparente e da área superficial por volume da vegetação, esses parâmetros afetam o comportamento numérico do incêndio de superfície. De acordo com os resultados das simulações numéricas, a umidade da vegetação também tem importância no incêndio de superfície. A temperatura inicial da vegetação e a umidade do ar na faixa de variação analisada não influenciam a taxa de propagação do incêndio. As simulações também mostraram que o processo de radiação é muito importante, e afeta diretamente todos os demais processos e a taxa de propagação do incêndio. A convecção tem importância muito menor que a radiação na condição de ausência de vento externo. A coerência das taxas de propagação do incêndio experimental e numérica em função da massa específica aparente de material combustível e da umidade da vegetação foi investigada. O modelo numérico é coerente em todas as nove combinações de casos. Já o experimento é coerente em quatro combinações. Com base nas comparações entre cada dois casos experimentais e as respectivas simulações numéricas, nota-se que as taxas de propagação a partir das simulações numéricas foram mais coerentes que as experimentais. / Forest fire is a complex combination of energy released as heat due to the combustion of the products from the vegetation pyrolysis and the transport of this energy to the surrounding air and vegetation. The first is the domain of chemistry and occurs on the molecular scale, and the second is the domain of physics and occurs at scales up to kilometers. It is the interaction of these processes on a wide range of temporal and spatial scales involved in forest fires that makes modeling its behavior such a challenging task. The spread of fire through small plants and dead leaves was simulated numerically using WFDS physical formulation. The approach used was three-dimensional and transient, based on a description of the physical phenomena that contribute to the spread of a surface fire through a layer of fuel. In this fire scenario, there are two regions: vegetation and air, each one with its physical and chemical properties and, although they need to be integrated into the solution mechanism, there are different phenomena that occur in each one. In the vegetation region, the approach is to represent it as subgrid particles surrounded by air. The heterogeneity of the vegetation, such as its nature, leaves, twigs, etc. was taken into account by using average physical properties that are representative of the Amazon forest. The phenomena in the vegetation region are the evaporation of its moisture, pyrolysis, heat transfer by radiation and convection. In the air region, the flaming combustion occurs in a turbulent environment, and heat transfer by radiation and convection play a significant role. To incorporate the radiation from the combustion gases, the physical model employs the finite volumes method, solving the radiation transfer equation as a transport equation for a finite number of discrete solid angles, which can be used in a wide range of optical thicknesses and participating media. Turbulent combustion for the gaseous phase is modeled using the Eddy Dissipation Concept (EDC) model. The mixing controlled turbulent combustion model adopts the assumption of infinitely fast chemical reaction between the fuel and air. This model represents well the fire physics in ventilated areas, as is the case of forest fires. To include the turbulent flow effects, it is used the Large Eddy Simulation (LES) method, which explicitly calculates the large turbulent structures, but models the dissipation and inertial cascade using approximations in the sub-grid scale. The vegetation and air regions exchange mass and energy. The behavior of the gas mixture resulting from the vegetation thermal degradation and combustion reactions is governed by the Navier-Stokes equations. The equations governing the physical model are formulated as partial differential equations, which are solved by numerical methods. The method used for discretization of the equations is the finite difference method on a staggered grid. The numerical model solves the Navier-Stokes equations for compressible fluids using the Favre filter. Dissipation of kinetic energy is achieved through a simple closure for the turbulent stress: the constant coefficient Deardorff model. The turbulent transport of heat and mass is accounted for by use of constant turbulent Prandtl and Schmidt numbers, respectively. The physical model simulation results were compared to experimental data obtained in the field for the spread of fire in the Amazon forest. Despite of the idealized conditions of fuel, wind and the uncertainties of the experimental data, the model predictions and the experiments are in the same order of magnitude. Experimental rate of spread range from 0.12 +/- 0.06 to 0.35 +/- 0.07 m/min. Even considering rate of spread experimental standard deviation, simulated rate values were within experimental error only in two of seven cases. The simulations showed that the important parameters for the model are the vegetation surface area to volume ratio, its bulk density and moisture. As the radiation absorption coefficient is a direct function of vegetation bulk density and surface area to volume ratio, these parameters affect the numeric behavior of the surface fire. According to the numerical simulations results, vegetation moisture is also important in the surface fire scenario. Vegetation initial temperature and air humidity in the range analyzed does not influence the rate of spread. The simulations also showed that the radiation process is very important and directly affects all other processes and rate of spread. Convection heat transfer has much less significance than radiation heat transfer in the absence of external wind. The consistency of the experimental and numerical rate of spread, as a function of combustible material bulk density and vegetation moisture was investigated. The numerical model is consistent in all nine case combinations. The experiment is consistent in four cases. Based on comparisons between each two experiments and their numerical simulations, it is noted that the rate of spread variation from the numerical simulation is more consistent than the experimental one.
127

Fire regimes in eastern coastal fynbos: drivers, ecology and management

Kraaij, Tineke January 2012 (has links)
Conventional knowledge of fynbos fire ecology is based on the summer-autumn fire regimes of the western Cape Floral Kingdom (CFK) where the climate is Mediterranean. However, the climate in the eastern coastal-CFK is milder and rainfall occurs year-round, with presumed effects on fire regimes. The Garden Route National Park (GRNP) has recently been established in the region, in a landscape where indigenous forests, fire-prone fynbos shrublands and fire-sensitive plantations of invasive alien trees are interspersed. The park faces considerable challenges related to the management of fire, including significant pressure from the adjacent plantation industry to reduce wildfire hazard by burning fynbos at short intervals, and high levels of invasion by alien trees (largely Pinus species originating from plantations). This study sought to improve understanding of fire regimes in eastern coastal fynbos shrublands, and to provide guidelines for ecologically sound management of fire in the area. My approach entailed (i) an assessment of the context within which fire management was practiced during the past century; (ii) characterisation of the recent fire history and fire regime (1900–2010); (iii) characterisation of the seasonality of fire weather and lightning; (iv) estimation of minimum fire return intervals (FRIs) from juvenile periods and post-fire recruitment success of overstorey proteoids (non-sprouting, slow-maturing, serotinous Proteaceae); and (v) determination of the ecologically appropriate fire season from post-fire recruitment seasonality of proteoids. I established that historically, plantation protection enjoyed priority over fynbos conservation in the area that is now the GRNP. Fynbos close to plantations has most likely been compromised by frequent and low-intensity burning in the past, as well as by invasion by alien trees. In terms of area burnt (1900–2010), natural (lightning-ignited) fires dominated the fire regime, particularly in the east, whereas prescribed burning was relatively unimportant. Typical fire return intervals (FRIs; 8–26 years; 1980–2010) were comparable to those in other fynbos protected areas and appeared to be shorter in the eastern Tsitsikamma than in the western Outeniqua halves of the study area. Proteaceae juvenile periods (4–9 years) and post-fire recruitment success (following fires in ≥7 year-old vegetation) suggested that for biodiversity conservation purposes, FRIs should be no less than nine years in moist, productive fynbos. Increases in the total area burnt annually (since 1980) were correlated with long-term increases in average fire danger weather, suggesting that fire regime changes may be related to global change. Collectively, findings on the seasonality of actual fires and the seasonality of fire danger weather, lightning, and post-fire proteoid recruitment suggested that fires in eastern coastal fynbos are not limited to any particular season, and for this reason managers do not need to be concerned if fires occur in any season. The ecological requirements for higher fire intensity may nonetheless be constrained by a need for safety. I articulated these findings into ecological thresholds pertaining to the different elements of the fire regime in eastern coastal fynbos, to guide adaptive management of fire in the Garden Route National Park. I also recommended a fire management strategy for the park to address the aforementioned operational considerations within the constraints posed by ecological thresholds. Finally, I highlighted further research and monitoring needs.
128

Adaptations of pyrophilous insects to burnt habitats: Odor signals, infrared receptors and behavior

Hoang, Thi Phuong 22 October 2019 (has links)
No description available.
129

Effets respiratoires de la pollution atmosphérique : prise en compte de plusieurs niveaux de pollution / Respiratory effects of air pollution : consideration of several levels of pollution

Youssouf, Hassani 23 December 2014 (has links)
Les objectifs de cette thèse sont d'étudier les effets respiratoires de la pollution atmosphérique en prenant en compte 3 niveaux d'exposition: les niveaux macroscopique, semi-individuel et individuel.Pour le niveau macroscopique, nous avons étudié les effets sanitaires des émissions des feux de forêts dans une étude de type écologique. Au travers d'une revue de la littérature, nous avons observé que plusieurs études épidémiologiques avaient mis en évidence l'association entre l'exposition aux émissions des feux et l'augmentation des maladies cardiopulmonaires et la mortalité pour les individus habitant à proximité. La principale limite à ces études est donnée par l'évaluation de l'exposition. Dans une étude de cas sur les incendies de Marseille de 2009, nous avons observé des effets à la limite de la signification 8 et 9 jours après l'exposition entre les concentrations des particules fines(PM2.5 ) issues des incendies et les effets respiratoires.Pour le niveau semi-individuel, nous avons étudié le lien entre la pollution domestique et professionnelle et les maladies respiratoires chez des agriculteurs auvergnats dans le cadre d'une étude de type transversale. Nous avons observé que les dérivés halogénés et l'étyl-butoxyacetate étaient associés de façon significative aux maladies des petites voies aériennes. La concentration de benzène dans la pièce de vie principale de la ferme était significativement associée à une augmentation du risque d'asthme. Enfin, l'utilisation de l'acide mercapturique, dans le cadre d'une étude de type cas témoin nichée nous a permis de mesurer la dose interne d'exposition du benzène parmi des enfants de l'étude et son lien avec l'asthme. / The objectives of this thesis were to study the respiratory effects of air pollution by taking into account three levels of exposure: the macroscopic, semi-individual and individual levels. For the macroscopic level, we studied the health effects of emissions from forest fires in an ecological study. Through a literature review, we found that several epidemiological studies have shown the association between exposure to wildfire emissions and increase cardiopulmonary disease and mortality for the people living nearby. The main limitation of these studies is given by the exposure assessment. In a case study of the wildfire occurred in Marseille in the summer 2009, we observed effects at the limit of significance 8 and 9 days after exposure between concentrations of fine particles (PM2.5) from fire and respiratory effects .For semi-individual level, we have studied the link between domestic and occupational pollution and respiratory diseases among farmers from Auvergne using a cross-sectional study. We observed that the halogenated hydrocarbons and Etyl-butoxyacetate were significantly associated with the small airways disease. Benzene concentration in the living room of the farm was significantly associated with an increased risk of asthma. Finally, the use of a biomarker (the mercapturic acid) in the context of a case-control study allowed us to measure the internal dose of the exposure to benzene and its link with asthma among children included the study.
130

The effect of clearcut logging and forest fires on hypolimnetic oxygen depletion rates in remote Canadian Shield lakes /

St. Onge, Peter Douglas. January 2001 (has links)
No description available.

Page generated in 0.0678 seconds