Spelling suggestions: "subject:"forest stand characteristics"" "subject:"corest stand characteristics""
1 |
Neparametrinio kNN metodo taikymo miškų inventorizacijoje tyrimai / Investigation of the application of non – parametric kNN method for forest inventoryJonikavičius, Donatas 16 August 2007 (has links)
Magistro darbe yra nagrinėjamos neparametrinio knn (k-nearest neighbor) metodo taikymo galimybės Lietuvos sąlygomis vertinant tradicinius miško taksacinius rodiklius bet kokiame šalies teritorijos taške.
Darbo objektas – Dubravos miškų urėdijos Dubravos miškas.
Darbo tikslas – įvertinti neparametrinio knn (k-nearest neighbor) metodo taikymo Lietuvos miškų inventorizacijose galimybes.
Darbo rezultatai. Nustatyta, kad taksacinių rodiklių įvertinimo knn metodu tikslumas kyla didinant apskaitos vienetų, išmatuotų vietovėje, skaičių. Pagrindiniai knn metodo parametrai, kuriais gauti geriausi rezultatai, buvo: 10 artimiausių kaimynų (k reikšmė), atvirkščiai proporcingo atstumo schema, nusakant kiekvieno iš artimiausių kaimynų svertus. Papildomos pagalbinės informacijos – tradicinės sklypinės miškų inventorizacijos metu nustatytų medynų taksacinių rodiklių – panaudojimas kartu su kosminiais Spot Xi vaizdais padidina taksacinių rodiklių įvertinimo tikslumą. Pritaikius optimalų knn metodo taikymo taktikos variantą, mažiausios pasiektos taksacinių rodiklių nustatymo vidutinės kvadratinės paklaidos sudarė 27% medyno vidutinio skersmens, 20% vidutinio aukščio, 40% skerspločių sumos, 35% vidutinio amžiaus, 43% tūrio viename ha, 33% spygliuočių procento rodiklio. Pasitelkus 1999 metų Spot Xi kosminius vaizdus, 1986 apskaitos bareliuose išmatuotas pagrindines medynų taksacines charakteristikas bei 1988 metų sklypinės miškotvarkos duomenis, knn metodu nustatyti pagrindinių taksacinių... [toliau žr. visą tekstą] / The research is dealing with investigations of non-parametric knn (k-nearest neighbor) method for estimation of standard forest characteristics at any point of an area under Lithuanian conditions.
Study object: Dubrava forest, managed by Dubrava experimental forest enterprise.
Objectives: to assess the usability of non-parametric knn (k-nearest neighbor) method in Lithuanian forests inventory.
Results. The increase in number of sample plots with known field information was found to improve the estimation accuracy. The most important parameters for use of knn methods were the following: 10 nearest neighbors (value of k), inverse distance weighted scheme for defining the weights of selected neighbors. Integrating of additional auxiliary information – characteristics of forest compartments, estimated during the conventional stand-wise inventory – to be used together with Spot Xi images improved the overall accuracy of estimations. The lowest achieved root mean square errors were 27% of the average value of all plots within the study area for mean diameter, 20% for mean height, 40% for basal area, 35% for mean age, 43% for volume per 1ha and 33% for the percent of coniferous species in stand tree species composition, when the optimal knn tactics were applied. Spot Xi images from the year 1999, main forest characteristics from 1986 field measured sample plots and data of conventional stand-wise forest inventory from the year 1988 were utilized to estimate using knn method the... [to full text]
|
Page generated in 0.1552 seconds