Spelling suggestions: "subject:"forest type classification"" "subject:"corest type classification""
1 |
Utilizing the Landsat spectral-temporal domain for improved mapping and monitoring of ecosystem state and dynamicsPasquarella, Valerie 07 December 2016 (has links)
Just as the carbon dioxide observations that form the Keeling curve revolutionized the study of the global carbon cycle, free and open access to all available Landsat imagery is fundamentally changing how the Landsat record is being used to study ecosystems and ecological dynamics. This dissertation advances the use of Landsat time series for visualization, classification, and detection of changes in terrestrial ecological processes. More specifically, it includes new examples of how complex ecological patterns manifest in time series of Landsat observations, as well as novel approaches for detecting and quantifying these patterns.
Exploration of the complexity of spectral-temporal patterns in the Landsat record reveals both seasonal variability and longer-term trajectories difficult to characterize using conventional bi-temporal or even annual observations. These examples provide empirical evidence of hypothetical ecosystem response functions proposed by Kennedy et al. (2014).
Quantifying observed seasonal and phenological differences in the spectral reflectance of Massachusetts’ forest communities by combining existing harmonic curve fitting and phenology detection algorithms produces stable feature sets that consistently out-performed more traditional approaches for detailed forest type classification. This study addresses the current lack of species-level forest data at Landsat resolutions, demonstrating the advantages of spectral-temporal features as classification inputs.
Development of a targeted change detection method using transformations of time series data improves spatial and temporal information on the occurrence of flood events in landscapes actively modified by recovering North American beaver (Castor canadensis) populations. These results indicate the utility of the Landsat record for the study of species-habitat relationships, even in complex wetland environments.
Overall, this dissertation confirms the value of the Landsat archive as a continuous record of terrestrial ecosystem state and dynamics. Given the global coverage of remote sensing datasets, the time series visualization and analysis approaches presented here can be extended to other areas. These approaches will also be improved by more frequent collection of moderate resolution imagery, as planned by the Landsat and Sentinel-2 programs. In the modern era of global environmental change, use of the Landsat spectral-temporal domain presents new and exciting opportunities for the long-term large-scale study of ecosystem extent, composition, condition, and change.
|
2 |
Dynamics of Forest Ecosystems Under Global Change: Applications of Artificial Intelligence in Mapping, Classification, and ProjectionAkane Ota Abbasi (17123185) 10 October 2023 (has links)
<p dir="ltr">Global forest ecosystems provide essential ecosystem services that contribute to water and climate regulation, food production, recreation, and raw materials. They also serve as crucial habitats for numerous terrestrial species of amphibians, birds, and mammals worldwide. However, recent decades have witnessed unprecedented changes in forest ecosystems due to climate change, shifts in species distribution patterns, increased planted forest areas, and various disturbances such as forest fires, insect infestations, and urbanization. These changes can have far-reaching impacts on ecological networks, human well-being, and the well-being of global forest ecosystems. To address these challenges, I present four studies to quantify forest dynamics through mapping, classification, and projection, using artificial intelligence tools in combination with a vast amount of training data. (I) I present a spatially continuous map of planted forest distribution across East Asia, produced by integrating multiple sources of planted and natural forest data. I found that China contributed 87% of the total planted forest areas in East Asia, most of which are located in the lowland tropical/subtropical regions and Sichuan Basin. I also estimated the dominant genus in each planted forest location. (II) I used continent-wide forest inventory data to compare the range shifts of forest types and their constituent tree species in North America in the past 50 years. I found that forest types shifted more than three times as fast as the average of their constituent tree species. This marked difference was attributable to a predominant positive covariance between tree species ranges and the change of species relative abundance. (III) Based on individual-level field surveys of trees and breeding birds across North America, I characterized New World wood-warbler (<i>Parulidae</i>) species richness and its potential drivers. I identified forest type as the most powerful predictor of New World wood-warbler species richness, which adds valuable evidence to the ongoing physiognomy versus composition debate among ornithologists. (IV) In the appendix, I utilized continent-wide forest inventory data from North America and South America and the combination of supervised and unsupervised machine learning algorithms to produce the first data-driven map of forest types in the Americas. I revealed the distribution of forest types, which are useful for cost-effective forest and biodiversity management and planning. Taken together, these studies provide insight into the dynamics of forest ecosystems at a large geographic scale and have implications for effective decision-making in conservation, management, and global restoration programs in the midst of ongoing global change.</p>
|
Page generated in 0.1254 seconds