• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 68
  • 35
  • 24
  • 7
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 232
  • 65
  • 53
  • 49
  • 35
  • 32
  • 32
  • 30
  • 28
  • 27
  • 27
  • 24
  • 23
  • 22
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Výroba táhlových háků / Production of towing hook

Frýdl, Pavel January 2016 (has links)
Requirements for the creation of a new technological process of manufacturing of towing hooks were cost savings by optimizing the initial blank and by creating semi automatic workplace. Selecting longitudinal rolling technology for manufacturing preform piece occurs to shorten production times and substantial material savings. By rolling of blank are secured always the exact dimensions of the preform piece and through a chain conveyors is facilitated handling with material for workers and reduced production time of forging line. By introduction of the proposed manufacturing method of towing hooks depending on the size of the series 30000 hooks per year will be achieved annually savings of over 4.000.000 CZK. Return of investments for the acquisition and adjustment of forging rolls and conveyors is 2,2 years.
72

Investigation of Formability and Fracture in Advanced Metal Forming Process- Bulk Forging and Sheet Metal Forming

Yang, Xi 07 October 2014 (has links)
No description available.
73

Investigation of fracture and springback in hot and cold forming

Kishore, Siddharth January 2014 (has links)
No description available.
74

Estimation of Forging Die Wear and Cost

Groseclose, Adam R. 03 November 2010 (has links)
No description available.
75

Estudo do forjamento de peças vazadas a partir de geratriz tubular

Marques, Angela Selau January 2013 (has links)
Neste trabalho é realizado um estudo teórico-experimental do processo de forjamento a quente em matriz fechada de peças tubulares, denominadas comercialmente por flanges. O material utilizado para fabricação das peças é a liga de alumínio AA 6351. Normalmente, tais peças são forjadas a partir de billets maciços e os furos centrais são, posteriormente, usinados. Desta forma, este trabalho visa o estudo do uso de billets vazados em substituição aos maciços minimizando a perda de material e força necessária para o forjamento que podem ser relativamente significativos dependendo do peso, geometria da peça, e tamanho do lote produzido. O processo de forjamento foi planejado e executado com auxilio de softwares, onde o projeto do ferramental foi realizado em programa de CAD 3D da empresa SolidWorks, e a simulação numérica computacional, aplicada para predizer o comportamento do material no final do forjamento, no programa Simufact. Forming 11.0. Foram analisados, por simulação numérica computacional, dados como a estimativa da força necessária para forjar a peça em estudo, preenchimento da matriz, escoamento do material e as deformações finais. Utilizam-se cálculos analíticos, baseados na Teoria Elementar da Plasticidade (TEP), para estimar a força necessária para o forjamento. Os resultados obtidos experimentalmente validam a utilização de métodos numéricos e analíticos para desenvolvimento de processos de forjamento. Os resultados de força obtidos utilizando o modelo matemático da Teoria Elementar da Plasticidade (TEP) foram os que mais se distanciaram da força real necessária para o forjamento, no caso do billet maciço foi de 2706 kN, enquanto que a força utilizada no experimento foi de 3432 kN e com a utilização do billet vazado a força calculada pela TEP foi de 2579 kN e a real foi de 2451 kN. Já a simulação indica valores necessários de 2432 kN para o billet vazado e 2814 kN para o billet maciço. Conclui-se, então, que com a utilização de billets vazados a força para o forjamento e o material utilizado são inferiores, assim, comprovando sua vantagem em relação ao processo de fabricação convencional. / In this paper is done a theoretical-experimental study of the hot forging process in closed die of tubular components, commercially known as flanges. The material used for the manufacture process of the pieces is AA6351. These pieces are usually forged from massive billets and the central holes are subsequently machined. In this way, this paper aims the use of hollow billets instead of the massive ones, minimizing the loss of material and strength used in forging that can be relatively significant depending on the weight, geometry of the piece and size of the batch produced. The forging process was planned and done with the help of software where the tooling project is performed in CAD 3D from Solidworks, and the computer numerical simulation applied to predict the material behavior at the final of the forging process in Simufact Forming 11.0. Data as strength, die filling, material draining and final deformation are analyzed by computer numerical simulation. Analytical calculation, based on the Plasticity Elementary Theory (TEP), are performed in order to estimate the necessary strength for the forging process. The results, experimentally obtained, validate the use of numerical and analytical methods in forging process development. The strength results obtained using the mathematical model of Plasticity Elementary Theory, were the farthest from the real required strength used in forging. As with the massive billet, the strength was 2706 kN while the strength used in the experiment was 3432 kN and using de hollow billet the estimated strength calculated by the TEP was 2579 kN while the real one was 2451 kN. Yet, the simulation indicates required values of 2432 kN for the hollow billet and 2814 kN for the massive billet. We can therefore conclude that when using hollow billets the strength required in forging and the used material are inferior, thus proving its advantage in relation to the conventional manufacture process.
76

Design And Thermo-mechanical Analysis Of Warm Forging Process And Dies

Sarac, Sevgi 01 September 2007 (has links) (PDF)
Forging temperature is one of the basic considerations in forging processes. In warm forging, the metals are forged at temperatures about the recrystallization temperature and below the traditional hot forging temperature. Warm forging has many advantages when compared to hot and cold forging. Accuracy and surface finish of the parts is improved compared to hot forging while ductility is increased and forming loads are reduced when compared to cold forging. In this study, forging process of a part which is currently produced at the hot forging temperature range and which needs some improvements in accuracy, material usage and energy concepts, is analyzed. The forging process sequence design with a new preform design for the particular part is proposed in warm forging temperature range and the proposed process is simulated using Finite Element Method. In the simulations, coupled thermal mechanical analyses are performed and the dies are modeled as deformable bodies to execute die stress analysis. Experimental study is also carried out in METU-BILTIR Center Forging Research and Application Laboratory and it has been observed that numerical and experimental results are in good agreement. In the study, material wastage is reduced by proposing using of a square cross section billet instead of a circular one, energy saving and better accuracy in part dimensions is achieved by reducing the forging temperature from the hot forging to the warm forging temperature range.
77

Thermo-mechanically Coupled Numerical And Experimental Study On 7075 Aluminum Forging Process And Dies

Ozcan, Mehmet Cihat 01 September 2008 (has links) (PDF)
Combination of high strength with light weight which is the prominent property of aluminum alloy forgings has led aluminum forgings used in rapidly expanding range of applications. In this study, to produce a particular 7075 aluminum alloy part, the forging process has been designed and analyzed. The forging process sequence has been designed by using Finite Volume Method. Then, the designed process has been analyzed by using Finite Element Method and the stress, strain and temperature distributions within the dies have been determined. Five different initial temperatures of the billet / 438, 400, 350, 300 and 250 degree Celsius have been considered in the thermo-mechanically coupled simulations. The initial temperatures of the dies have been taken as 200 degree Celsius for all these analyses. Finite volume analysis and finite element analysis results of the preform and finish part have been compared for the initial billet temperature of 400 oC. Close results have been observed by these analyses. The experimental study has been carried out for the range of the initial billet temperatures of 251&amp / #8211 / 442 degree Celsius in METU-BILTIR Center Forging Research and Application Laboratory. It has been observed that the numerical and the experimental results are in good agreement and a successful forging process design has been achieved. For the initial die temperature of 200 degree Celsius, to avoid the plastic deformation of the dies and the incipient melting of the workpiece, 350 degree Celsius is determined to be the appropriate initial billet temperature for the forging of the particular part.
78

Analysis And Design For Aluminum Forging Process

Ozturk, Huseyin 01 December 2008 (has links) (PDF)
Aluminum forging products has been increasingly used in automotive and aerospace industry due to their lightness and strength. In this study, aluminum forging processes of a particular industrial part for the two different alloys (Al 7075 and Al 6061) have been analyzed. The forging part, forging process and the required dies have been designed according to the aluminum forging design parameters. The proposed process has been simulated by using the Finite Volume Method. In the simulations, analysis of the part during forging process has been performed / and the required forging force, the temperature distribution and the effective stress distribution in the parts have been obtained. The forging dies were produced in the METU-BILTIR Center CAD/CAM Laboratory. The experimental study has been performed in the METU-BILTIR Center Forging Research and Application Laboratory. The parts were produced without any defects as obtained in the finite volume simulations. The results of the experiment and finite volume simulation are compared and it has been observed good agreement.
79

Design Of Fixturing System For Forging Dies

Cavbozar, Ozgur 01 December 2008 (has links) (PDF)
In forging industry, the die setup starts with unloading the previous die set and ends with approval of the first part produced. During conventional die setup, forging press is kept idle. The aim of this study is to perform die changing applications of the 1000 ton forging press of Aksan Steel Forging Company in more systematic way to reduce the idle time. The applicability of Single Minute Exchange of Dies (SMED) System and quick die locating methods have been studied. SMED classifies the setup operations as internal and external setup operations. During the internal setup operations the press is kept idle. Therefore it has been tried to reduce the internal setup time. In this study, a new modular die system has been developed. The die system to be used for the forging press with 1000 ton capacity in Aksan Steel Forging Company has been redesigned regarding the dimensional limitations, requirements, SMED System and quick die locating methods. The modules of proposed die system and the dies for a particular forging part have been produced. Tests, observations and time studies have been carried out. The time spent for alignment of the upper and lower dies on the press have been eliminated in the proposed system. The solutions have been proposed for the frequently encountered problems of setup operations of the company and these have been applied in the system. In order to eliminate operator mistakes, marking applications have also been introduced and the application of die cavity revision has been renewed. During the time studies for the case study, it has been seen that the internal setup time of the forging press with 1000 ton capacity has been reduced from 220 minutes to 141 minutes which corresponds to a reduction of 36 %.
80

Wear Analysis Of Hot Forging Dies

Abachi, Siamak 01 December 2004 (has links) (PDF)
WEAR ANALYSIS OF HOT FORGING DIES ABACHI, Siamak M. S., Department of Mechanical Engineering Supervisor: Prof. Dr. Metin AKK&Ouml / K Co-Supervisor: Prof. Dr. Mustafa lhan G&Ouml / KLER December 2004, 94 pages The service lives of dies in forging processes are to a large extent limited by wear, fatigue fracture and plastic deformation, etc. In hot forging processes, wear is the predominant factor in the operating lives of dies. In this study, the wear analysis of a closed die at the final stage of a hot forging process has been realized. The preform geometry of the part to be forged was measured by Coordinate Measuring Machine (CMM), and the CAD model of the die and the worn die were provided by the particular forging company. The hot forging operation was carried out at a workpiece temperature of 1100&deg / C and die temperature of 300&deg / C for a batch of 678 on a 1600-ton mechanical press. The die and the workpiece materials were AISI L6 tool steel and DIN 1.4021, respectively. The simulation of forging process for the die and the workpiece was carried out by Finite Volume Method using MSC.SuperForge. The flow of the material in the die, die filling, contact pressure distribution, sliding velocities and temperature distribution of the die have been investigated. In a single stroke, the depth of wear was evaluated using Archard&rsquo / s wear equation with a constant wear coefficient of 1&yen / 10-12 Pa-1 as an initial value. The depth of wear on the die surface in every step has been evaluated using the Finite Volume simulation results and then the total depth of wear was determined. To be able to compare the wear analysis results with the experimental worn die, the surface measurement of the worn die has been done on CMM. By comparing the numerical results of the die wear analysis with the worn die measurement, the dimensional wear coefficient has been evaluated for different points of the die surface and finally a value of dimensional wear coefficient is suggested. As a result, the wear coefficient was evaluated as 6.5&yen / 10-13 Pa-1 and considered as a good approximation to obtain the wear depth and the die life in hot forging processes under similar conditions.

Page generated in 0.0626 seconds