• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Defining and Preventing Code-injection Attacks

Ray, Donald 01 January 2013 (has links)
This thesis shows that existing definitions of code-injection attacks (e.g., SQL-injection attacks) are flawed. The flaws make it possible for attackers to circumvent existing mechanisms, by supplying code-injecting inputs that are not recognized as such. The flaws also make it possible for benign inputs to be treated as attacks. After describing these flaws in conventional definitions of code-injection attacks, this thesis proposes a new definition, which is based on whether the symbols input to an application get used as (normal-form) values in the application's output. Because values are already fully evaluated, they cannot be considered ``code'' when injected. This simple new definition of code-injection attacks avoids the problems of existing definitions, improves our understanding of how and when such attacks occur, and enables us to evaluate the effectiveness of mechanisms for mitigating such attacks.
2

Precise Detection of Injection Attacks on Concrete Systems

Whitelaw, Clayton 06 November 2015 (has links)
Injection attacks, including SQL injection, cross-site scripting, and operating system command injection, rank the top two entries in the MITRE Common Vulnerability Enumeration (CVE) [1]. Under this attack model, an application (e.g., a web application) uses some untrusted input to produce an output program (e.g., a SQL query). Applications may be vulnerable to injection attacks because the untrusted input may alter the output program in malicious ways. Recent work has established a rigorous definition of injection attacks. Injections are benign iff they obey the NIE property, which states that injected symbols strictly insert or expand noncode tokens in the output program. Noncode symbols are strictly those that are either removed by the tokenizer (e.g., insignificant whitespace) or span closed values in the output program language, and code symbols are all other symbols. This thesis demonstrates that such attacks are possible on applications for Android—a mobile device operating system—and Bash—a common Linux shell—and shows by construction that these attacks can be detected precisely. Specifically, this thesis examines the recent Shellshock attacks on Bash and shows how it widely differs from ordinary attacks, but can still be precisely detected by instrumenting the output program’s runtime. The paper closes with a discussion of the lessons learned from this study and how best to overcome the practical challenges to precisely preventing these attacks in practice.
3

Formalizing biomedical concepts from textual definitions

Petrova, Alina, Ma, Yue, Tsatsaronis, George, Kissa, Maria, Distel, Felix, Baader, Franz, Schroeder, Michael 07 January 2016 (has links) (PDF)
BACKGROUND: Ontologies play a major role in life sciences, enabling a number of applications, from new data integration to knowledge verification. SNOMED CT is a large medical ontology that is formally defined so that it ensures global consistency and support of complex reasoning tasks. Most biomedical ontologies and taxonomies on the other hand define concepts only textually, without the use of logic. Here, we investigate how to automatically generate formal concept definitions from textual ones. We develop a method that uses machine learning in combination with several types of lexical and semantic features and outputs formal definitions that follow the structure of SNOMED CT concept definitions. RESULTS: We evaluate our method on three benchmarks and test both the underlying relation extraction component as well as the overall quality of output concept definitions. In addition, we provide an analysis on the following aspects: (1) How do definitions mined from the Web and literature differ from the ones mined from manually created definitions, e.g., MeSH? (2) How do different feature representations, e.g., the restrictions of relations' domain and range, impact on the generated definition quality?, (3) How do different machine learning algorithms compare to each other for the task of formal definition generation?, and, (4) What is the influence of the learning data size to the task? We discuss all of these settings in detail and show that the suggested approach can achieve success rates of over 90%. In addition, the results show that the choice of corpora, lexical features, learning algorithm and data size do not impact the performance as strongly as semantic types do. Semantic types limit the domain and range of a predicted relation, and as long as relations' domain and range pairs do not overlap, this information is most valuable in formalizing textual definitions. CONCLUSIONS: The analysis presented in this manuscript implies that automated methods can provide a valuable contribution to the formalization of biomedical knowledge, thus paving the way for future applications that go beyond retrieval and into complex reasoning. The method is implemented and accessible to the public from: https://github.com/alifahsyamsiyah/learningDL.
4

Formalizing biomedical concepts from textual definitions

Tsatsaronis, George, Ma, Yue, Petrova, Alina, Kissa, Maria, Distel, Felix, Baader , Franz, Schroeder, Michael 04 January 2016 (has links) (PDF)
Background Ontologies play a major role in life sciences, enabling a number of applications, from new data integration to knowledge verification. SNOMED CT is a large medical ontology that is formally defined so that it ensures global consistency and support of complex reasoning tasks. Most biomedical ontologies and taxonomies on the other hand define concepts only textually, without the use of logic. Here, we investigate how to automatically generate formal concept definitions from textual ones. We develop a method that uses machine learning in combination with several types of lexical and semantic features and outputs formal definitions that follow the structure of SNOMED CT concept definitions. Results We evaluate our method on three benchmarks and test both the underlying relation extraction component as well as the overall quality of output concept definitions. In addition, we provide an analysis on the following aspects: (1) How do definitions mined from the Web and literature differ from the ones mined from manually created definitions, e.g., MeSH? (2) How do different feature representations, e.g., the restrictions of relations’ domain and range, impact on the generated definition quality?, (3) How do different machine learning algorithms compare to each other for the task of formal definition generation?, and, (4) What is the influence of the learning data size to the task? We discuss all of these settings in detail and show that the suggested approach can achieve success rates of over 90%. In addition, the results show that the choice of corpora, lexical features, learning algorithm and data size do not impact the performance as strongly as semantic types do. Semantic types limit the domain and range of a predicted relation, and as long as relations’ domain and range pairs do not overlap, this information is most valuable in formalizing textual definitions. Conclusions The analysis presented in this manuscript implies that automated methods can provide a valuable contribution to the formalization of biomedical knowledge, thus paving the way for future applications that go beyond retrieval and into complex reasoning. The method is implemented and accessible to the public from: https://github.com/alifahsyamsiyah/learningDL.
5

Formalizing biomedical concepts from textual definitions

Petrova, Alina, Ma, Yue, Tsatsaronis, George, Kissa, Maria, Distel, Felix, Baader, Franz, Schroeder, Michael 07 January 2016 (has links)
BACKGROUND: Ontologies play a major role in life sciences, enabling a number of applications, from new data integration to knowledge verification. SNOMED CT is a large medical ontology that is formally defined so that it ensures global consistency and support of complex reasoning tasks. Most biomedical ontologies and taxonomies on the other hand define concepts only textually, without the use of logic. Here, we investigate how to automatically generate formal concept definitions from textual ones. We develop a method that uses machine learning in combination with several types of lexical and semantic features and outputs formal definitions that follow the structure of SNOMED CT concept definitions. RESULTS: We evaluate our method on three benchmarks and test both the underlying relation extraction component as well as the overall quality of output concept definitions. In addition, we provide an analysis on the following aspects: (1) How do definitions mined from the Web and literature differ from the ones mined from manually created definitions, e.g., MeSH? (2) How do different feature representations, e.g., the restrictions of relations' domain and range, impact on the generated definition quality?, (3) How do different machine learning algorithms compare to each other for the task of formal definition generation?, and, (4) What is the influence of the learning data size to the task? We discuss all of these settings in detail and show that the suggested approach can achieve success rates of over 90%. In addition, the results show that the choice of corpora, lexical features, learning algorithm and data size do not impact the performance as strongly as semantic types do. Semantic types limit the domain and range of a predicted relation, and as long as relations' domain and range pairs do not overlap, this information is most valuable in formalizing textual definitions. CONCLUSIONS: The analysis presented in this manuscript implies that automated methods can provide a valuable contribution to the formalization of biomedical knowledge, thus paving the way for future applications that go beyond retrieval and into complex reasoning. The method is implemented and accessible to the public from: https://github.com/alifahsyamsiyah/learningDL.
6

Formalizing biomedical concepts from textual definitions: Research Article

Tsatsaronis, George, Ma, Yue, Petrova, Alina, Kissa, Maria, Distel, Felix, Baader, Franz, Schroeder, Michael 04 January 2016 (has links)
Background Ontologies play a major role in life sciences, enabling a number of applications, from new data integration to knowledge verification. SNOMED CT is a large medical ontology that is formally defined so that it ensures global consistency and support of complex reasoning tasks. Most biomedical ontologies and taxonomies on the other hand define concepts only textually, without the use of logic. Here, we investigate how to automatically generate formal concept definitions from textual ones. We develop a method that uses machine learning in combination with several types of lexical and semantic features and outputs formal definitions that follow the structure of SNOMED CT concept definitions. Results We evaluate our method on three benchmarks and test both the underlying relation extraction component as well as the overall quality of output concept definitions. In addition, we provide an analysis on the following aspects: (1) How do definitions mined from the Web and literature differ from the ones mined from manually created definitions, e.g., MeSH? (2) How do different feature representations, e.g., the restrictions of relations’ domain and range, impact on the generated definition quality?, (3) How do different machine learning algorithms compare to each other for the task of formal definition generation?, and, (4) What is the influence of the learning data size to the task? We discuss all of these settings in detail and show that the suggested approach can achieve success rates of over 90%. In addition, the results show that the choice of corpora, lexical features, learning algorithm and data size do not impact the performance as strongly as semantic types do. Semantic types limit the domain and range of a predicted relation, and as long as relations’ domain and range pairs do not overlap, this information is most valuable in formalizing textual definitions. Conclusions The analysis presented in this manuscript implies that automated methods can provide a valuable contribution to the formalization of biomedical knowledge, thus paving the way for future applications that go beyond retrieval and into complex reasoning. The method is implemented and accessible to the public from: https://github.com/alifahsyamsiyah/learningDL.

Page generated in 0.139 seconds