• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deformation and Quantization of color Lie bialgebras and alpha-type cohomologies for Hom-algebras / Déformation et quantification de bialgèbres de Lie colorées et cohomologies de Hom-algèbres de type alpha

Hurle, Benedikt 04 October 2018 (has links)
La première partie de la thèse traite des déformations et quantification de bialgèbres de Lie. L'existence d'une quantification pour chaque bialgèbre de Lie a été démontrée par Etingof et Kazhdan. Dans ce travail, on s'intéresse au cas des bialgèbres de Lie colorée, c'est à dire une structure de bialgèbres de Lie sur un espace gradué par un groupe quelconque et un bicaractère. A cet effet, on adapte la preuve de Etingof et Kazhdan et on introduit une généralisation au cas coloré du grand crochet introduit par Lecomte et Roger. Par ailleurs nous définissons une cohomologie pour les algèbres et bialgèbres de Lie colorées. Dans le deuxième partie de la thèse, on considère les algèbres Hom-associatives et algèbres Hom-Lie. Une algèbre Hom-associative est définie par une multiplication et une application linéaire alpha modifiant l'associativité. On commence cette partie par rappeler des définitions et propriétés des algèbres de type Hom. Ensuite, on définit la cohomologie de Hochschild de type alpha, en donnant ses propriétés. Une étude similaire est faite dans le cas des algèbres Hom-Lie et la cohomologie de Chevalley-Eilenberg, ainsi que pour les Hom-bialgèbres et bialgèbres Hom-Lie. La théorie de déformations formelles introduite par Gerstenhaber met en lien les déformations et la cohomologie. Dans cette thèse on établit une théorie de déformations des algèbres Hom-associatives basée sur la cohomologie de Hochschild de type alpha. Il s'agit de déformer simultanément la multiplication et l'application linéaire. Par ailleurs, on explore la structure d’algèbre de Lie à homotopie près correspondante, telle que les éléments de Maurer-Cartan sont des Hom-algèbres. / In the first part of this thesis, we provide a proof that any color Lie bialgebra can be quantized. This was proved for Lie bialgebras by Etingof and Kazhdan. Here we generalize this proof to color Lie bialgebras, which are Lie bialgebras graded by an arbitrary abelian group and symmetry given by a bicharacter. Before giving the details of the proof, we first recall the definitions and basic properties of color Lie algebras and bialgebras. Also a generalization of the Grand Crochet introduced by Lecomte and Roger to the color setting is given. Using the Grand Crochet, we also provide a cohomology for color Lie bialgebras. In the second part, we study different type of Hom-algebras, especially Hom-Lie and Hom-associative algebras. Hom-algebras are algebras were the defining relations, e.g. the associativity, are twisted by a linear map alpha called structure map. We first recall the relevant definitions. Then we define a new cohomology for Hom-associative and Hom-Lie algebras called alpha-type Hochschild and Chevalley-Eilenberg cohomology respectively. We also show how these cohomologies can be used to study formal deformations, in the sense of Gerstenhaber, of Hom-associative and Hom-Lie algebras. We allow the deformation of the multiplication and the structure map. We also consider alpha type cohomologies for Hom-bialgebras. Moreover, we explore the corresponding homotopy Lie algebra structure such that the Maurer-Cartan elements are Hom-algebras.
2

Théorie de Hodge mixte et variétés des représentations des groupes fondamentaux des variétés algébriques complexes / Mixed Hodge theory and representation varieties of fundamental groups of complex algebraic varieties

Lefèvre, Louis-Clément 25 June 2018 (has links)
La théorie de Hodge mixte de Deligne fournit des structures supplémentaires sur les groupes de cohomologie des variétés algébriques complexes. Depuis, des structures de Hodge mixtes ont été construites sur les groupes d'homotopie rationnels de telles variétés par Morgan et Hain. Dans cette lignée, nous construisons des structures de Hodge mixtes sur des invariants associés aux représentations linéaires des groupes fondamentaux des variétés algébriques complexes lisses. Le point de départ est la théorie de Goldman et Millson qui relie la théorie des déformations de telles représentations à la théorie des déformations via les algèbres de Lie différentielles graduées. Ceci a été relu par P. Eyssidieux et C. Simpson dans le cas des variétés kählériennes compactes. Dans le cas non compact, et pour des représentations d'image finie, Kapovich et Millson ont construit seulement des graduations non canoniques. Pour construire des structures de Hodge mixtes dans le cas non compact et l'unifier avec le cas compact traité par Eyssidieux-Simpson, nous ré-écrivons la théorie de Goldman-Millson classique en utilisant des idées plus modernes de la théorie des déformations dérivée et une construction d'algèbres L-infini due à Fiorenza et Manetti. Notre structure de Hodge mixte provient alors directement du H^0 d'un complexe de Hodge mixte explicite, de façon similaire à la méthode de Hain pour le groupe fondamental, et dont la fonctorialité apparaît clairement. / The mixed Hodge theory of Deligne provides additional structures on the cohomology groups of complex algebraic varieties. Since then, mixed Hodge structures have been constructed on the rational homotopy groups of such varieties by Morgan and Hain. In this vein, we construct mixed Hodge structures on invariants associated to linear representations of fundamental groups of smooth complex algebraic varieties. The starting point is the theory of Goldman and Millson that relates the deformation theory of such representations to the deformation theory via differential graded Lie algebras. This was reviewed by P. Eyssidieux and C. Simpson in the case of compact Kähler manifolds. In the non-compact case, and for representations with finite image, Kapovich and Millson constructed only non-canonical gradings. In order to construct mixed Hodge structures in the non-compact case and unify it with the compact case treated by Eyssidieux-Simpson, we re-write the classical Goldman-Millson theory using more modern ideas from derived deformation theory and a construction of L-infinity algebras due to Fiorenza and Manetti. Our mixed Hodge structure comes then directly from the H^0 of an explicit mixed Hodge complex, in a similar way as the method of Hain for the fundamental group, and whose functoriality appears clearly.

Page generated in 0.0896 seconds