• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 13
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Vznik nukleových bází z formamidu iniciovaný procesy o vysoké hustotě energie / Formation of nucleobases from formamide initiated by high-power density energy events

Michalčíková, Regina January 2012 (has links)
This Master's thesis deals with determination of nucleobases in formamide samples (pure or catalyzed form) after their initiation by high-power density energy events. The theoretical part states the reader to the problems of prebiotic chemistry and acquaints him with the various theories of the origin of the nucleobases. The experimental part deals with the analysis of the samples initiated by Laser System PALS, which was used for the simulation high-power density energy events. For the identification and determination of the final products of laser plasma initiated chemical reactions in the gaseous phase of the samples was used the Fourier Transform Infrared Spectroscopy. The liquid part of the samples and the nucleobases in this part were analyzed by the gas chromatography with the mass detection.
12

Radiation and thermal processing of ices and surfaces relevant to prebiotic chemistry in the solar system and interstellar regions

Dawley, Margaret Michele 11 February 2013 (has links)
This dissertation has investigated the adsorption, thermal behavior, and radiation (both photon and electron) processing of prebiotically-relevant ices and surfaces. A custom ultra-high vacuum (UHV) chamber has been built that is coupled with a Fourier Transform-Infrared (FT IR) spectrometer and a Temperature Programmed Desorption (TPD) system that utilizes Quadrupole Mass Spectrometry (QMS) to study selected organic:surface systems. Formamide (HCONH₂) has been studied in two related but distinct studies relevant to primitive Earth and interstellar chemistry. First, in collaboration with a theory group, formamide’s interaction with kaolinite (Al6Si6O36H30), a clay mineral relevant to early Earth chemistry, has been studied experimentally and theoretically. Experimental infrared results are compared with calculated infrared frequencies obtained by our collaborators. TPD analysis is compared with the calculated values of adsorption energy, and the optimal kaolinite termination site for adsorption is reported. Second, the first thermal and radiation damage study of pure formamide and HCONH₂:H₂O mixed ices on an interstellar icy grain analog (SiO₂) is reported. A discussion of the pure formamide ice phases identified with FT-IR upon warm-up, as well as the TPD binding energies of HCONH₂ on SiO₂, is presented. The observed Lyman-alpha photochemical products and proposed formation mechanisms from pure formamide ice is reported and discussed. In addition, results of Lyman alpha processing of mixed HCONH₂:H₂O ices are provided. Low-energy electron irradiation of pure HCONH₂ and HCONH₂:H₂O mixed ices has also been reported for the first time. A third investigation has studied acetylene (C₂D₂) and acetonitrile (CH₃CN) interactions and radiation stability in mixed low-temperature ices to simulate possible prebiotic reactions that may occur on Saturn’s moon, Titan. This investigation contributes to understanding the possible consumption, trapping, and degradation of these species on the surface of Titan.
13

Vznik organických molekul iniciovaný procesy o vysoké hustotě energie v planetárních atmosférách / Formation of organics molecules initiated by high-power density energy events in planetary atmospheres

Kamas, Michal January 2010 (has links)
The focused laser beam delivered by the high-power laser system PALS was used for laboratory simulation of high-energy-density events in a planetary atmosphere. Several model gas mixtures were prepared to mimic the mildly reducing early Earth's atmosphere (CO-N2-H2O) as well as the atmosphere of Saturn's moon Titan and the strongly reducing early Earth's atmosphere (CH4-N2-H2O). In situ investigation of transient species generated by the laser-induced dielectric breakdown in the gaseous mixtures was performed by optical emission spectroscopy (OES). Final products of laser-plasma initiated chemical reactions were identified and determined by advanced mass-spectrometry (SIFT-MS) and absorption FT-IR spectroscopy. High-power laser system SOFIA was utilized to simulate in our laboratory a high-velocity impact into the icy satellites of the outer planets of the Solar system. OES was engaged in probing the plasmas produced by the SOFIA beam focused on ice surfaces (water, methanol, formamide), while final products were analyzed by means of gas chromatography (GC/MS) and mass-spectrometry (SIFT-MS).

Page generated in 0.0288 seconds