Spelling suggestions: "subject:"informationation""
141 |
Streamline-based modeling and interpretation of formation-tester measurementsHadibeik Nishaboori, Abdolhamid 21 January 2014 (has links)
Formation testing is a critical component of modern petrophysical analysis for determining pore pressure, pressure gradients, and reservoir connectivity, and for estimating static and dynamic formation properties. However, petrophysicists tend to avoid the analysis of transient formation-tester measurements because of the physical and mathematical complexities involved, including time-consuming numerical simulations, rock heterogeneity, anisotropy, presence of mud-filtrate invasion, and saturation-dependent properties. Additional technical challenges arise when modeling formation-tester measurements in heterogeneous reservoirs penetrated by high-angle wells.
A new method is developed in this dissertation to efficiently simulate formation-tester measurements acquired in heterogeneous reservoirs penetrated by vertical and deviated wells. The method is based on tracing flow streamlines from the reservoir into the formation tester’s probe. Before tracing streamlines, an initial reservoir condition is imposed due to the pressure-saturation field resulting from mud-filtrate invasion. Subsequently, the spatial distribution of pressure is calculated via finite differences to account for the negative flow-rate source originating from the tester’s probe. Streamlines are retraced at various time intervals upon updating the pressure distribution resulting from dynamic fluid flow toward the source. The streamline-based simulation method is efficient and flexible in accounting for various probe configurations, including dual packers and point focused-sampling probes. Streamlines are also used to trace reservoir fluid and contamination into sample probes. In addition, graphical rendering of streamlines permits rapid assessment of flow regimes as a function of time.
Simulation results obtained with finite-difference and streamline methods agree well, although the streamline-based method is computationally more efficient. However, the streamline method is not well suited for complicated fluid displacement, such as that arising in the presence of highly compressible flow, strong capillary-pressure effects, and variable phase behavior. Furthermore, criteria for enforcing pressure updates with finite differences raise additional difficulties in accurately modeling formation-tester measurements. Despite these limitations, forward simulation results indicate that both faster computation time and reduced computer-memory requirements resulting from use of the streamline-based method are ideal for inversion of formation-tester measurements used in estimating static and dynamic petrophysical properties.
Synthetic and field examples of streamline-based inversion are considered to estimate petrophysical properties from transient data acquired with packer and probe-type formation testers. The method is applied to measurements acquired in two offshore field reservoirs penetrated by vertical and deviated wells to estimate permeability, anisotropy, and relative permeability. In the documented examples, each streamline-based simulation used to calculate the Jacobian matrix is up to 8.7 times faster than that obtained by using the finite-difference method. Inversion results also indicate that streamline trajectories are valuable in ascertaining the sensitivity of estimated formation properties in the presence of variable pressure/fluid sampling locations, variable wellbore orientations with respect to formation bedding, and reservoir heterogeneity in deviated and horizontal well models. / text
|
142 |
Studies and applications of intermolecular (4+3) cycloaddition reactions of epoxy and aziridinyl enolsilanesLam, Yan-yu, Sarah, 林恩如 January 2013 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
|
143 |
Probing the physical conditions of star formationYoung, Kaisa Elizabeth 28 August 2008 (has links)
Not available / text
|
144 |
Massive star formation, from the Milky Way to distant galaxiesWu, Jingwen 28 August 2008 (has links)
Not available / text
|
145 |
Tracing the mass during star formation: studies of dust continuum and dense gasShirley, Yancy Leonard 29 August 2008 (has links)
Not available / text
|
146 |
Chemical and dynamical conditions in low-mass star forming coresLee, Jeong-eun 29 August 2008 (has links)
Not available / text
|
147 |
Evolution of low-mass protostarsYoung, Chadwick Hayward 29 August 2008 (has links)
Not available / text
|
148 |
Isotopic abundance analysis of field and cluster starsYong, David C., 1974- 03 August 2011 (has links)
Not available / text
|
149 |
Alkylation of furan with 2-phenylthioallyl chlorideGains, Lawrence Howard, 1948- January 1977 (has links)
No description available.
|
150 |
Spitzer and HHT Observations of the Earliest Stages of Star FormationStutz, Amelia Marie January 2009 (has links)
We use Spitzer Space Telescop and Heinrich Hertz Telescope(HHT) observations to study the earliest stages of low--mass starformation. Using spatially resolved absorption features, termedshadows, we study the cold cloud cores where stars form.We study Barnard 335, a prototypical isolated Bok globule with anembedded Class 0 protostar. We discover an 8 micron shadow in theinner regions of the core; using this feature we measure the densecore structure and mass. Using HHT observations we detect a rotatingstructure, a flattened molecular core, with a diameter~ 10,000 AU. The flattened molecular core is likely to be thesame structure as that generating the 8 micron shadow, and isexpected from theoretical simulations. This structure has not beenrobustly detected in previous observations although there have beensome prior indications of its presence.We study dense starless core structure through longer wavelengthobservations of shadows; we present Spitzer observations of 8 micron,24 micron, and 70 micron\ shadows of 14 cores in total. Combined withHHT observations of 12CO 2--1 and 13CO 2--1, we derive core sizes,masses, study core structure, and investigate the collapse status ofeach core. Our study of starless core CB190 reveals that the core islikely to be stable against collapse if magnetic pressure is presentat a reasonable level in the core. Our study of the 70 micron shadowassociated with the starless core L429 reveals that this object isvery likely to be collapsing. Finally, we study a sample of 12starless cores selected to have prominent 24 micron shadows. We findthat about 2/3 of these sources are likely to be collapsing.Additionally, we find indications that 1/2 of the cores revealed to becollapse candidates show indications of having 70 micron shadows. Weconclude that all cores dense enough to produce 70 micron shadows arecollapse candidates, and that the presence of a shadow at 24 micronis an indicator that the core is likely (60% probability)to be collapsing.
|
Page generated in 0.0639 seconds