• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Beamforming et détection pour signaux non circulaires et/ou non gaussiens (algorithmes et performance) / Beamforming and detection for non circular and/or nonGaussian signals (Algorithms and performances)

Oukaci, Abdelkader 30 November 2010 (has links)
Cette thèse est consacrée à l'exploitation des propriétés de non circularité et de non gaussianité des signaux en traitement d'antennes.Dans une première partie de cette thèse, nous nous intéressons au contexte de la formation de voies (beamforming) pour la réception d'un signal utile inconnu, dont le vecteur directionnel est connu, corrompu par un bruit potentiellement non circulaire et/ou non gaussien. Dans des études récentes, un beamformer MVDR (Minimum Variance Distortionless Response) linéaire au sens large WL (Widely Linear) exploitant la non circularité au second ordre (SO) des interférences a été introduit et analysé. Cependant, ce beamformer demeure sous optimal pour la réception d'un signal utile non circulaire au SO, du moment où il n'exploite pas la non circularité de ce dernier. C'est ainsi, que notre contribution a porté principalement sur l'introduction, l'étude de performances et la mise en \oe uvre d'un beamformer MVDR WL. Ce dernier, basé sur une décomposition orthogonale originale du signal utile introduisant une contrainte supplémentaire, prend en considération la non circularité du signal utile et celle des interférences. L'étude des performances de ce beamformer a montré que ce dernier améliore toujours les performances en présence de signaux non circulaires. Dans le même contexte et pour la réception de signaux non gaussiens, nous avons introduit et étudié un beamformer MVDR non linéaire de Volterra. Ce beamformer dont les contraintes s'adaptent à la non circularité des brouilleurs, a été étudié à l'ordre trois sous sa forme équivalente GSC. Cette structure, dite complète, prend en compte conjointement des propriétés de non circularité et de non gaussianité des brouilleurs. L'analyse des performances en gains en SINR de ce récepteur est donnée pour la réception d'un signal réel corrompu par des brouilleurs non gaussiens et non circulaires d'ordre deux et quatre. Cette analyse a montré que la prise en considération de ces propriétés améliore toujours les performances. Dans une deuxième partie nous nous intéressons au contexte de détection selon deux volets: Le premier volet consiste en la détection d'un signal utile réel connu de paramètres inconnus, noyé dans un bruit total potentiellement non circulaire au SO et de matrice de covariance inconnue. Ainsi, suivant une approche basée sur le test de rapport de vraisemblance généralisé GLRT (Generalized Likelihood Ratio Test), de nouveaux récepteurs pour la détection d'un signal réel connu avec différents ensembles de paramètres inconnus ont été récemment introduits. Néanmoins, les performances de ces récepteurs, n'ont été que partiellement étudiées. Notre contribution a porté sur l'étude des distributions exactes et asymptotiques des statistiques associées au LRT et au GLRT sous H_0 et H_1. Cette étude a permis de donner les expressions théoriques exactes des probabilités de détection et de fausse alarme des récepteurs LRT, et celles asymptotiques pour certains récepteurs GLRT. Nous avons aussi complété cette analyse par des simulations Monte-Carlo en courbes ROC (Receiver Operating Characterisics) pour l'ensemble des détecteurs GLRT. Le deuxième volet, consiste en la détection de non circularité au SO de signaux aléatoires mono et multidimensionnels complexes. Nous avons donné la distribution asymptotique du GLR de non circularité sous H_0 et H_1 dérivé sous l'hypothèse de distribution gaussienne mais utilisée sous une distribution arbitraire non nécessairement gaussienne des données. Ces données considérées sont indépendantes, mais non nécessairement identiquement distribuées, ce qui permet de traiter des situations pratiques où les données non circulaires sont perturbées par un résidu de fréquence et un bruit additif gaussien circulaire. Cette analyse a été aussi complétée par des courbes ROC. / This thesis is devoted to the study of exploiting the properties of non-circularity and non-Gaussianity of signals in array processing. In the first part of this thesis, we focus on beamforming technics in the context of the reception of an unknown signal, whose steering vector is known, corrupted by potentially non-circular and/or non-Gaussian noise. In recent studies, a widely linear minimum variance distortionless response beamformer (WL MVDR) exploiting the second order (SO) non-circularity of interference was introduced and analyzed. However, this beamformer remains suboptimal for the reception of a non-circular useful signal, since it does not exploit the non-circularity of this latter. Thus, our contribution has focused on the introduction, the performances analysis and the implementation of a WL MVDR Beamformer. This latter, based on an original orthogonal decomposition of the useful signal, take into account the SO non-circularity of both useful signal and interferences. The new performances analysis of this new beamformer has shown that it always improves the performance of the well known Capon beamformer and the WL MVDR beamformer introduced recently, this in the presence of non-circular signals. In the same context and for receiving non-Gaussian signals, we introduced and studied a nonlinear MVDR Beamformer based on comlexe Volterra filters. This Beamformer, which adapt the constraints to the non circularity of jammers, has been studied in the third order by its equivalent GSC form. The performance analysis of this beamformer are shown in term of SINR Gains for the recepetion of non-Gaussian and SO (until to fourth order) non-circular. It is shown that taking into account of these properties always improves performance. In the second part, we focus on two parts of detection: The first part consists of the detection a known signal, with unknown parameters, corrupted by a total noise potentially SO noncircular with unknown covariance matrix. Thus, following Generalized Likelihood Ratio Test approach, new receivers for the detection a real known signal with different sets of unknown parameters have been recently introduced. Nevertheless, the performances analysis of these receptors have only been partially studied. Our contribution has focused on the study of exact and asymptotic distributions of statistics associated with the LRT and GLRT under H$_0$ and H$_1$. This study has given theoretical expressions of probabilities of correct detection and false alarm. We also supplemented this analysis with Monte Carlo simulations and given receiver operating characterisics ROC curves. In the second part, we consider the problem of testing impropriety (i.e., second-order noncircularity) of a complex valued random variable based on the generalized likelihood ratio test (GLRT) for Gaussian distributions. Asymptotic (w.r.t. the data length) distributions of the GLR are given under the hypothesis that data are proper or improper, and under the true, not necessarily Gaussian distribution of the data. The considered data are independent but not necessarily identically distributed: assumption which has never been considered until now. This enables us to deal with the practical important situations of noncircular data disturbed by residual frequency offsets and additive circular noise. The receiver operating characteristic (ROC) of this test is derived as byproduct, an issue previously overlooked. Finally illustrative examples are presented in order to strengthen the obtained theoretical results.
2

Beamforming et détection pour signaux non circulaires et/ou non gaussiens (algorithmes et performance)

Oukaci, Abdelkader 30 November 2010 (has links) (PDF)
Cette thèse est consacrée à l'exploitation des propriétés de non circularité et de non gaussianité des signaux en traitement d'antennes.Dans une première partie de cette thèse, nous nous intéressons au contexte de la formation de voies (beamforming) pour la réception d'un signal utile inconnu, dont le vecteur directionnel est connu, corrompu par un bruit potentiellement non circulaire et/ou non gaussien. Dans des études récentes, un beamformer MVDR (Minimum Variance Distortionless Response) linéaire au sens large WL (Widely Linear) exploitant la non circularité au second ordre (SO) des interférences a été introduit et analysé. Cependant, ce beamformer demeure sous optimal pour la réception d'un signal utile non circulaire au SO, du moment où il n'exploite pas la non circularité de ce dernier. C'est ainsi, que notre contribution a porté principalement sur l'introduction, l'étude de performances et la mise en \oe uvre d'un beamformer MVDR WL. Ce dernier, basé sur une décomposition orthogonale originale du signal utile introduisant une contrainte supplémentaire, prend en considération la non circularité du signal utile et celle des interférences. L'étude des performances de ce beamformer a montré que ce dernier améliore toujours les performances en présence de signaux non circulaires. Dans le même contexte et pour la réception de signaux non gaussiens, nous avons introduit et étudié un beamformer MVDR non linéaire de Volterra. Ce beamformer dont les contraintes s'adaptent à la non circularité des brouilleurs, a été étudié à l'ordre trois sous sa forme équivalente GSC. Cette structure, dite complète, prend en compte conjointement des propriétés de non circularité et de non gaussianité des brouilleurs. L'analyse des performances en gains en SINR de ce récepteur est donnée pour la réception d'un signal réel corrompu par des brouilleurs non gaussiens et non circulaires d'ordre deux et quatre. Cette analyse a montré que la prise en considération de ces propriétés améliore toujours les performances. Dans une deuxième partie nous nous intéressons au contexte de détection selon deux volets: Le premier volet consiste en la détection d'un signal utile réel connu de paramètres inconnus, noyé dans un bruit total potentiellement non circulaire au SO et de matrice de covariance inconnue. Ainsi, suivant une approche basée sur le test de rapport de vraisemblance généralisé GLRT (Generalized Likelihood Ratio Test), de nouveaux récepteurs pour la détection d'un signal réel connu avec différents ensembles de paramètres inconnus ont été récemment introduits. Néanmoins, les performances de ces récepteurs, n'ont été que partiellement étudiées. Notre contribution a porté sur l'étude des distributions exactes et asymptotiques des statistiques associées au LRT et au GLRT sous H_0 et H_1. Cette étude a permis de donner les expressions théoriques exactes des probabilités de détection et de fausse alarme des récepteurs LRT, et celles asymptotiques pour certains récepteurs GLRT. Nous avons aussi complété cette analyse par des simulations Monte-Carlo en courbes ROC (Receiver Operating Characterisics) pour l'ensemble des détecteurs GLRT. Le deuxième volet, consiste en la détection de non circularité au SO de signaux aléatoires mono et multidimensionnels complexes. Nous avons donné la distribution asymptotique du GLR de non circularité sous H_0 et H_1 dérivé sous l'hypothèse de distribution gaussienne mais utilisée sous une distribution arbitraire non nécessairement gaussienne des données. Ces données considérées sont indépendantes, mais non nécessairement identiquement distribuées, ce qui permet de traiter des situations pratiques où les données non circulaires sont perturbées par un résidu de fréquence et un bruit additif gaussien circulaire. Cette analyse a été aussi complétée par des courbes ROC.
3

Système de formation de faisceau dans la bande 300 GHz en technologie BiCMOS 55nm pour l’imagerie THz / Beamforming system in the 300 GHz frequency band in BiCMOS 55 nm technology for THz imaging

Iskandar, Zyad 26 October 2016 (has links)
La bande sub-millimétrique allant globalement de 300 GHz à 3 THz possède des propriétés similaires à la capacité de pénétration de photons non ionisants à travers des matériaux optiquement opaques. Pour l'imagerie THz, il est ainsi possible de détecter des objets cachés à l'intérieur de paquets, de vêtements ou de matelas... Avec l’évolution des technologies intégrées et l’augmentation des fréquences de coupure des transistors 〖(f〗_t/f_max), de nombreux circuits et systèmes ont été réalisés à des fréquences autour de 300 GHz, en particulier les systèmes de formation de faisceau. Ces systèmes permettent de générer un signal et de l’orienter électroniquement dans une direction définie de l’espace. Dans ce travail, une architecture originale d’un tel système est proposée. Elle repose sur la génération d’un signal dans la bande 270-300 GHz, tout en contrôlant sa phase à l’aide de déphaseurs implémentés au niveau de la voie LO dans la bande 45-50 GHz. La complexité du système impose une stratégie qui consiste à réaliser chaque bloc seul. Pour cela, l’émetteur dans la bande 270-300 GHz a été réalisé dans un premier temps. Il est composé d’un oscillateur verrouillé par injection sous-harmonique (45-50 GHz), d’un mélangeur passif et d'amplificateurs IF. Ensuite une architecture innovante de déphaseur a été réalisée, basée sur des lignes couplées à ondes lentes. Finalement, une chaîne de multiplication de fréquence a été réalisée afin de générer le signal d’injection à l’aide d’un signal basse fréquence (3-5 GHz). Les circuits ont été fabriqués en technologie BiCMOS 55 nm de STMicroelectronics. Les résultats de mesure correspondent sont en très bon accord avec les simulations, et les performances obtenues sont à l’état de l’art. Une fois les blocs élémentaires validés, des sous-systèmes ont été réalisés pour valider le bon fonctionnement d’une voie complète du réseau d'antennes. En termes de perspectives, ce travail ouvre la voie vers la conception et la réalisation d'un système complet d'orientation de faisceau contenant plusieurs voies/antennes. / The sub-millimeter wave band that covers the frequency range from 300 GHz to 3 THz has an interesting properties such the ability to penetrate materials. For THz imaging, it is possible to detect objects inside packages, clothes... With the evolution of integrated technologies and the increase of the cut-off frequencies of transistors 〖(f〗_t/f_max), many circuits and systems have been fabricated around 300 GHz, especially phased arrays for beamforming applications. These systems generate a signal and steer it electronically in a direction of the space. In this work, a novel architecture of phased array is proposed. It is based on the generation of a signal in the 270-300 GHz band, while controlling its phase by using phase shifters implemented in the LO path in the 45-50 GHz band. Each bloc should be measured in a stand-alone version, in order to get an idea about whole system performances. For this, the transmitter in the 270-300 GHz band has been realized first. It consists of a sub-harmonic injection locked oscillator, a passive mixer and IF amplifiers. Then, a novel architecture of phase shifter was proposed, it is based on slow waves coupled lines. Finally, a frequency multiplier chain was performed to generate the injection signal by using a lower frequency signal (3-5 GHz). The circuits are fabricated in a 55nm BiCMOS technology from STMicroelectronics. Measurements results are in a good agreement with simulations. Once the blocks are validated, sub systems are realized in order to validate one path of the array. The perspectives of this work include the design and realization of the complete phased array with multiple paths/antennas.
4

Estimating the time and angle of arrivals in mobile communications

Elahian, Bahareh 19 April 2018 (has links)
Dans ce projet, nous présentons une méthode nouvelle et précise d’estimation de la direction et des délais d’arrivée dans un environnement à trajets multiples, à des fins d’estimation de canal. Récemment, les méthodes de super-résolution ont été largement utilisées pour l’estimation à haute-résolution de la direction d’arrivée (DOA) ou de la différence de temps d’arrivée (TDOA). L’algorithme proposé dans ce travail est applicable à l’estimation d’un canal espace-temps pour des systèmes de traitement spatio-temporel qui emploient la technologie hybride DOA / TDOA. L’estimateur est basé sur l’algorithme MUSIC classique pour trouver la DOA et en profitant d’un simple corrélateur, il est possible de trouver le retard de chaque arrivée. Il est pertinent d’associer chaque angle à son propre retard pour être capable d’estimer les caractéristiques du canal quand nous ne connaissons pas la séquence transmise par l’émetteur. Pour ce faire, nous proposons une formation de faisceaux (voix) très simple et optimale par l’application du MVDR (Maximum Variance Distortion-less Response). Cette formation de faisceaux maximise le signal desiré par rapport aux autres signaux. Après détermination de l’angle d’arrivée par l’algorithme MUSIC, nous appliquons l’algorithme de formation de faisceaux MVDR pour obtenir le signal qui est reçu par le réseau d’antennes pour une direction. Ce signal est corrélé avec les autres signaux correspondants aux autres directions d’arrivée. Les pics dans les figures ainsi obtenues montrent le décalage temporel de chaque source par rapport à celle obtenue par la formation de faisceaux MVDR. La soustraction du plus petit décalage, correspondant au premier signal reçu à chaque décalage temporel, nous donne le temps d’arrivée de chaque source. Pour être plus précis, nous pouvons choisir la moyenne des vecteurs des délais estimés, chacun étant obtenu à partir d’une angle pour l’algorithme MVDR. / In this project, we present a novel and precise way of estimating the direction and delay of arrivals in multipath environment for channel estimation purposes. Recently, super-resolution methods have been widely used for high resolution Direction Of Arrival (DOA) or Time Difference Of Arrival (TDOA) estimation. The proposed algorithm in this work is applicable to space-time channel estimation for space-time processing systems that employ hybrid DOA/TDOA technology. The estimator is based on the conventional MUSIC algorithm to find the DOA and by using a simple correlator it is possible to find the delay of each arrival. It is of interest to associate each angle to its proper delay to be able to estimate the characteristics of the channel when we have no knowledge about the transmitted sequence. To do this, we suggest a very simple and optimal beamforming method by performing Maximum Variance Distortion-less Response (MVDR). This beamforming maximizes the desired signal in the desired direction compare to the other signals that come from other directions. After finding the DOAs by MUSIC algorithm and selecting our desired direction, we obtain the signal from this direction by applying MVDR beamforming. Then, we perform a correlation between this signal and the others incoming signals from other directions. The peaks in the simulation figures illustrate the delay between each source with the obtained signal from MVDR. If we subtract the delay of the first arrival (the smallest delay in time), from the delays indicated in the figures, we can obtain the delay of each arrival. To be more precise, the mean of these estimated TOAs vector follows the exact TOA of each source.
5

Allocation de ressources et association utilisateur/cellule optimisées pour les futurs réseaux denses / Optimized resource allocation and user/cell association for future dense networks

Ha, Duc Thang 30 September 2019 (has links)
Depuis plusieurs années, les opérateurs de téléphonie mobile sont confrontés à une croissance considérable du trafic de données mobiles. Dans un tel contexte, la technologie Cloud Radio Access Network (CRAN) qui intègre les solutions de Cloud Computing aux réseaux d’accès radio est considérée comme une nouvelle architecture pour les futures générations de réseaux 5G. L’approche CRAN permet une optimisation globale des fonctions de traitement en bande de base du signal et de la gestion des ressources radio pour l’ensemble des RRH et des utilisateurs. Parallèlement, les réseaux hétérogènes (HetNets) ont été proposés pour augmenter efficacement la capacité et la couverture du réseau 5G tout en réduisant la consommation énergétique. En combinant les avantages du Cloud avec ceux des réseaux HetNets, le concept de réseaux H-CRAN (Heterogeneous Cloud Radio Access Networks) est né et est considéré comme l’une des architectures les plus prometteuses pour répondre aux exigences des futurs systèmes. Plus particulièrement, nous abordons le problème important de l’optimisation jointe de l’association utilisateur-RRH et de la solution de beamforming sur la liaison descendante d’un système H-CRAN. Nous formulons un problème de maximisation du débit total du système sous des contraintes de mobilité et d’imperfection de CSI (Channel State Information). Notre principal défi consiste à concevoir une solution capable de maximiser le débit tout en permettant, contrairement aux autres solutions de référence, de réduire la complexité de calcul, et les coûts de signalisation et de feedback CSI dans divers environnements. Notre étude commence par proposer un algorithme Hybride, qui active périodiquement des schémas de clustering dynamiques et statiques pour aboutir à un compromis satisfaisant entre optimalité et le coût en complexité et signalisation CSI et réassociation. L’originalité de l’algorithme Hybride réside aussi dans sa prise en compte de la dimension temporelle du processus d’allocation sur plusieurs trames successives plutôt que son optimalité (ou sous-optimalité) pour la seule trame d’ordonnancement courante. De plus, nous développons une analyse des coûts de l’algorithme en fonction de plusieurs critères afin de mieux appréhender le compromis entre les nombreux paramètres impliqués. La deuxième contribution de la thèse s’intéresse au problème sous la perspective de la mobilité utilisateur. Deux variantes améliorées de l’algorithme Hybride sont proposées : ABUC (Adaptive Beamforming et User Clustering), une version adaptée à la mobilité des utilisateurs et aux variations du canal radio, et MABUC (Mobility-Aware Beamforming et User Clustering), une version améliorée qui règle dynamiquement les paramètres de feedback du CSI (périodicité et type de CSI) en fonction de la vitesse de l’utilisateur. L’algorithme MABUC offre de très bonnes performances en termes de débit cible tout en réduisant efficacement la complexité et les coûts de signalisation CSI. Dans la dernière contribution de la thèse, nous approfondissons l’étude en explorant l’optimisation automatique des paramètres d’ordonnancement du CSI. Pour ce faire, nous exploitons l’outil de l’apprentissage par renforcement afin d’optimiser les paramètres de feedback CSI en fonction du profil de mobilité individuelle des utilisateurs. Plus spécifiquement, nous proposons deux modèles d’apprentissage. Le premier modèle basé sur un algorithme de type Q-learning a permis de démontrer l’efficacité de l’approche dans un scénario à taille réduite. Le second modèle, plus scalable car basé sur une approche Deep Q-learning, a été formulé sous la forme d’un processus de type POMDP (Partially observable Markov decision process). Les résultats montrent l’efficacité des solutions qui permettent de sélectionner les paramètres de feedback les plus adaptés à chaque profil de mobilité, même dans le cas complexe où chaque utilisateur possède un profil de mobilité différent et variable dans le temps. / Recently, mobile operators have been challenged by a tremendous growth in mobile data traffic. In such a context, Cloud Radio Access Network (CRAN) has been considered as a novel architecture for future wireless networks. The radio frequency signals from geographically distributed antennas are collected by Remote Radio Heads (RRHs) and transmitted to the cloud-centralized Baseband Units (BBUs) pool through fronthaul links. This centralized architecture enables a global optimization of joint baseband signal processing and radio resource management functions for all RRHs and users. At the same time, Heterogeneous Networks (HetNets) have emerged as another core feature for 5G network to enhance the capacity/coverage while saving energy consumption. Small cells deployment helps to shorten the wireless links to end-users and thereby improving the link quality in terms of spectrum efficiency (SE) as well as energy efficiency (EE). Therefore, combining both cloud computing and HetNet advantages results in the so-called Heterogeneous-Cloud Radio Access Networks (H-CRAN) which is regarded as one of the most promising network architectures to meet 5G and beyond system requirements. In this context, we address the crucial issue of beamforming and user-to-RRH association (user clustering) in the downlink of H-CRANs. We formulate this problem as a sum-rate maximization problem under the assumption of mobility and CSI (Channel State Information) imperfectness. Our main challenge is to design a framework that can achieve sum-rate maximization while, unlike other traditional reference solutions, being able to alleviate the computational complexity, CSI feedback and reassociation signaling costs under various mobility environments. Such gain helps in reducing the control and feedback overhead and in turn improve the uplink throughput. Our study begins by proposing a simple yet effective algorithm baptized Hybrid algorithm that periodically activates dynamic and static clustering schemes to balance between the optimality of the beamforming and association solutions while being aware of practical system constraints (complexity and signaling overhead). Hybrid algorithm considers time dimension of the allocation and scheduling process rather than its optimality (or suboptimality) for the sole current scheduling frame. Moreover, we provide a cost analysis of the algorithm in terms of several parameters to better comprehend the trade-off among the numerous dimensions involved in the allocation process. The second key contribution of our thesis is to tackle the beamforming and clustering problem from a mobility perspective. Two enhanced variants of the Hybrid algorithm are proposed: ABUC (Adaptve Beamforming and User Clustering), a mobility-aware version that is fit to the distinctive features of channel variations, and MABUC (Mobility-Aware Beamforming and User Clustering), an advanced version of the algorithm that tunes dynamically the feedback scheduling parameters (CSI feedback type and periodicity) in accordance with individual user velocity. MABUC algorithm achieves a targeted sum-rate performance while supporting the complexity and CSI signaling costs to a minimum. In our last contribution, we propose to go further in the optimization of the CSI feedback scheduling parameters. To do so, we take leverage of reinforcement learning (RL) tool to optimize on-the-fly the feedback scheduling parameters according to each user mobility profile. More specifically, we propose two RL models, one based on Q-learning and a second based on Deep Q-learning algorithm formulated as a POMDP (Partially observable Markov decision process). Simulation results show the effectiveness of our proposed framework, as it enables to select the best feedback parameters tailored to each user mobility profile, even in the difficult case where each user has a different mobility profile.

Page generated in 0.1884 seconds