Spelling suggestions: "subject:"informationation off"" "subject:"informationation oof""
421 |
Discourse and Configurations of GenderLarsen, Pia January 2004 (has links)
My research paper is an investigation of the discourse of gender in relation to the work of Michel Foucault, Susan Bordo, Judith Butler and the artists Louise Bourgeois, Fiona Hall, Jo Spence and Neil Emmerson. I have applied Foucault's notion of the formation, necessity and operations of discourses as the basis from which ideas can be articulated, and the context within which notions of gender are formulated and challenged. I examine the processes in discourses, such as the imposition of disciplines to control the subject, which in turn are inscribed in the body of the subject by the subject, as they begin to perceive and define themselves in terms of the disciplines. I use this theory on the relationship between discourse-power-knowledge to analyse my work and that of the artists mentioned. The work of each artist is discussed in terms of the discourse of gender and the basis from which they critique its power, its effects on bodies and forms of representation through a marginal discourse. For the purposes of my work, the conclusion reached is that to disrupt the discourse of gender entails a continual questioning and awareness of its 'truths,' processes and effects. Description of Studio Work: The three major works examine the power and operations of the discourse of gender on bodies and how marginal discourses subvert these constructions. My works in paper, printmedia and metal, in two dimensions and three, reflect the effects through forms that seek to question limitations and extend our conception of male and female bodies. The wall piece, Out of Order, re-configures symbols and signs from the discourse of gender as a means of disrupting notions that gender is immutable. A swirling red line is woven through a densely layered mass of horizontal broken lines. The addition of symbols, X and Y chromosomes, numbers and other tokens of gender, appear at various points in this marginal discourse on conception of 'bodies.' Mammaphone, which accompanies Out of Order and Bullrushes, consists of an enlarged breast LP playing on a turntable. The 'tracks' are a litany of terms for the breast from slang and maternal discourses. The turntable that 'hosts' the LP sits on top of a stylised 'flight recorder's black box,' which suggests the hidden discourse on gender. Bullrushes, is an arrangement of 20 phallic-like forms each on a flexible metal rod that sways with the passage of air around the work. The work presents male bodies as durable, delicate and vulnerable despite the norms of the masculine discourse. The intention is to put into process an interrogation of the effects of gender on bodies and the possibilities for re-thinking the discourse of gender.
|
422 |
Intramolecular cyclizations of substitutes 5-hexenyl radicalsPhillipou, George. January 1974 (has links) (PDF)
No description available.
|
423 |
Paleosols as an indicator of ancient landscapes, climates and stratal response during the Triassic the Salt Anticline Region of Utah /Prochnow, Shane J. Nordt, Lee C. January 2005 (has links)
Thesis (Ph.D.)--Baylor University, 2005. / Includes bibliographical references (p. 108-119).
|
424 |
Stratigraphy, petrography and geochemistry of the Bad Heart Formation, Northwestern AlbertaKafle, Basant 06 1900 (has links)
Bad Heart Formation oolitic ironstone is the largest resources of iron in western Canada. During this study, 45 new sections from outcrop, trench and drill holes were mapped, and 325 samples were collected for petrographic and geochemical analysis. The objective of the first paper is to refine the previously published stratigraphic model based on the new data. The second paper deals with geochemistry and discuss genesis of ooids and source of iron in oolitic ironstone.
The textures of the Bad Heart Formation ironstone suggest the ooids formed in-place in a relatively shallow, wave-agitated, oxygenated marine environment with repetitive growth of the ooids in water column. There are two possible source of iron in the ooids. Some geochemical data indicate it is continental sedimentary, but it is also possible that the iron sourced from sub-sea hydrothermal or meteoric vents, similar to recent iron deposits at Paint Pots in Kootenay National Park.
|
425 |
Observing the galactic plane with the Balloon-borne Large-Aperture Submillimeter TelescopeMarsden, Gaelen 05 1900 (has links)
Stars form from collapsing massive clouds of gas and dust. The UV and optical light emitted by a forming or recently-formed star is absorbed by the surrounding cloud and is re-radiated thermally at infrared and
submillimetre wavelengths. Observations in the submillimetre spectrum are uniquely sensitive to star formation in the early Universe, as the peak of the thermal emission is redshifted to submillimetre wavelengths. The coolest objects in star forming regions in our own Galaxy, including heavily-obscured proto-stars and starless gravitationally-bound clumps, are also uniquely bright in the submillimetre spectrum. The Earth's atmosphere is mostly opaque at these wavelengths, however, limiting the spectral coverage and sensitivity achievable from ground-based observatories.
The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) observes the sky from an altitude of 40 km, above 99.5% of the atmosphere, using a long-duration scientific balloon platform. BLAST observes at 3 broad-band wavelengths spanning 250-500 micron, taking advantage of detector technology developed for the space-based
instrument SPIRE, scheduled for launch in 2008. The greatly-enhanced atmospheric transmission at float altitudes, increased detector sensitivity and large number of detector elements allow BLAST to survey much larger fields in a much smaller time than can be accomplished with ground-based instruments. It is expected that in a
single 10-day flight, BLAST will detect ~10000 extragalactic sources, ~100 times the number detected in 10 years of ground-based observations, and 1000s of Galactic star-forming sources, a large fraction of which are not seen by infrared telescopes.
The instrument has performed 2 scientific flights, in the summer of 2005 and winter of 2006, for a total of 16 days of observing time. This thesis discusses the design of the instrument, performance of the flights, and presents the analysis of 2 of the fields observed during the first flight. A failure in the optical system during the first
flight precluded sensitive extragalactic observations, so the majority of the flight was spent observing Galactic targets. We anticipate exciting extragalactic and Galactic results from the 2006 data.
|
426 |
Analytical modeling and simulation of metal cutting forces for engineering alloysPang, Lei 01 April 2012 (has links)
In the current research, an analytical chip formation model and the methodology to determine material flow data have been developed. The efforts have been made to address work hardening and thermal softening effects and allow the material to flow continuously through an opened-up deformation zone. Oxley's analysis of machining is extended to the application of various engineering materials. The basic model is extended to the simulation of end milling process and validated by comparing the predictions with experimental data for AISI1045 steel and three other materials (AL-6061, AL7075 and Ti-6Al-4V) from open literatures.
The thorough boundary conditions of the velocity field in the primary shear zone are further identified and analyzed. Based on the detailed analysis on the boundary conditions of the velocity and shear strain rate fields, the thick “equidistant parallel-sided” shear zone model was revisited. A more realistic nonlinear shear strain rate distribution has been proposed under the frame of non-equidistant primary shear zone configuration, so that all the boundary conditions can be satisfied.
Based on the developed model, inverse analysis in conjugation of genetic algorithm based searching scheme is developed to identify material flow stress data under the condition of metal cutting.
ii
On the chip-tool interface, The chip-tool interface is assumed to consist of the secondary shear zone and elastic friction zone(i.e. sticking zone and sliding zone). The normal stress distribution over the entire contact length is represented by a power law equation, in which the exponent is determined based on the force and moment equilibrium. The shear stress distribution for the entire contact length is assumed to be independent of the normal stress. The shear stress is assumed to be constant for the plastic contact region and exponentially distributed over the elastic contact region, with the maximum equal to the shear flow stress at the end of sticking zone and zero at the end of total contact. The total contact length is derived as a function governed by the shape of normal stress distribution. The length of the sticking zone is determined as the distance from the cutting edge to the location where the local coefficient of friction reaches a critical value that initiates the bulk yield of the chip. Considering the shape of the secondary shear zone, the length of the sticking zone can also be determined by angle relations. The maximum thickness of the secondary shear zone is determined by the equality of the sticking lengths calculated by two means. With an arbitrary input of the sliding friction coefficient, various processing parameters as well as contact stress distributions during orthogonal metal cutting can be obtained. / UOIT
|
427 |
Probing the Interstellar Medium and Massive Star Formation using Submillimeter Dust EmissionRoy, Arabindo 31 August 2011 (has links)
This thesis aims to improve our understanding of the early stages of massive star formation and of the physical properties of interstellar clouds. To achieve this, I have used submillimeter
continuum dust emission data obtained by the Balloon-borne Large Aperture submillimeter Telescope (BLAST) in the first science flight in 2005, with a 2-m telescope operating simultaneously at 250, 350, and 500 micron.
Unfortunately, BLAST produced images of
about 3'3 resolution due to an uncharacterized optical problem.
In Chapter~2, I discuss implementation of the Lucy-Richardson (L-R) method of deconvolution to restore BLAST images to near
diffraction limited resolution. Its performance and convergence have been extensively analyzed through simulations and
comparison of deconvolved images with available high-resolution maps.
In Chapter~3, I study diverse phenomena in the Cygnus~X region associated with high mass star-formation.
To interpret the BLAST emission more fully and place the compact sources in context, archival data cubes of 13CO line emission
from KOSMA, MIPS images from the Spitzer Legacy Survey of this region, and 21-cm radio continuum emission from the Canadian
Galactic Plane Survey have been used.
Utilizing available ancillary multi-wavelength observations, the influence of OB stars and stellar clusters on Cygnus~X has been studied,revisiting the well-known DR HII regions and their surroundings in the light of submillimeter continuum dust emission and CO line emission. An effort has been made to assess the evolutionary sequence of the compact sources (spatial extent of about 1~pc) on the basis of L-M diagram and subsequently to relate this sequence to independent empirical evidence and theory.
Using multi-resolution observations, evidence for hierarchical substructures within molecular clouds has been examined.
Finally, in Chapter~4, a multi-wavelength power spectrum analysis of the large scale
brightness fluctuations in the Galactic plane is presented. This analysis has been used to assess the level of cirrus noise which limits the detection of faint sources. A characteristic power law exponent of about -2.7 has been obtained for sub-regions of Aquila and Cygnus~X. The observed relative amplitudes of power spectra at different wavelengths have been related through a spectral energy distribution, thereby determining a characteristic temperature for the Galactic diffuse emission.
|
428 |
Disruption of Giant Molecular Clouds by Massive Star ClustersHarper-Clark, Elizabeth 09 January 2012 (has links)
The lifetime of a Giant Molecular Cloud (GMC) and the total mass of stars that form within it are crucial to the understanding of star formation rates across a whole galaxy. In particular, the stars within a GMC may dictate its disruption and the quenching of further star formation. Indeed, observations show that the Milky Way contains GMCs with extensive expanding bubbles while the most massive stars are still alive. Simulating entire GMCs is challenging, due to the large variety of physics that needs to be included, and the computational power required to accurately simulate a GMC over tens of millions of years. Using the radiative-magneto-hydrodynamic code Enzo, I have run many simulations of GMCs. I obtain robust results for the fraction of gas converted into stars and the lifetimes of the GMCs: (A) In simulations with no stellar outputs (or ``feedback''), clusters form at a rate of 30% of GMC mass per free fall time; the GMCs were not disrupted but contained forming stars. (B) Including ionization gas pressure or radiation pressure into the simulations, both separately and together, the star formation was quenched at between 5% and 21% of the original GMC mass. The clouds were fully disrupted within two dynamical times after the first cluster formed. The radiation pressure contributed the most to the disruption of the GMC and fully quenched star formation even without ionization. (C) Simulations that included supernovae showed that they are not dynamically important to GMC disruption and have only minor effects on subsequent star formation. (D) The inclusion of a few micro Gauss magnetic field across the cloud slightly reduced the star formation rate but accelerated GMC disruption by reducing bubble shell disruption and leaking. These simulations show that new born stars quench further star formation and completely disrupt the parent GMC. The low star formation rate and the short lifetimes of GMCs shown here can explain the low star formation rate across the whole galaxy.
|
429 |
Probing the Interstellar Medium and Massive Star Formation using Submillimeter Dust EmissionRoy, Arabindo 31 August 2011 (has links)
This thesis aims to improve our understanding of the early stages of massive star formation and of the physical properties of interstellar clouds. To achieve this, I have used submillimeter
continuum dust emission data obtained by the Balloon-borne Large Aperture submillimeter Telescope (BLAST) in the first science flight in 2005, with a 2-m telescope operating simultaneously at 250, 350, and 500 micron.
Unfortunately, BLAST produced images of
about 3'3 resolution due to an uncharacterized optical problem.
In Chapter~2, I discuss implementation of the Lucy-Richardson (L-R) method of deconvolution to restore BLAST images to near
diffraction limited resolution. Its performance and convergence have been extensively analyzed through simulations and
comparison of deconvolved images with available high-resolution maps.
In Chapter~3, I study diverse phenomena in the Cygnus~X region associated with high mass star-formation.
To interpret the BLAST emission more fully and place the compact sources in context, archival data cubes of 13CO line emission
from KOSMA, MIPS images from the Spitzer Legacy Survey of this region, and 21-cm radio continuum emission from the Canadian
Galactic Plane Survey have been used.
Utilizing available ancillary multi-wavelength observations, the influence of OB stars and stellar clusters on Cygnus~X has been studied,revisiting the well-known DR HII regions and their surroundings in the light of submillimeter continuum dust emission and CO line emission. An effort has been made to assess the evolutionary sequence of the compact sources (spatial extent of about 1~pc) on the basis of L-M diagram and subsequently to relate this sequence to independent empirical evidence and theory.
Using multi-resolution observations, evidence for hierarchical substructures within molecular clouds has been examined.
Finally, in Chapter~4, a multi-wavelength power spectrum analysis of the large scale
brightness fluctuations in the Galactic plane is presented. This analysis has been used to assess the level of cirrus noise which limits the detection of faint sources. A characteristic power law exponent of about -2.7 has been obtained for sub-regions of Aquila and Cygnus~X. The observed relative amplitudes of power spectra at different wavelengths have been related through a spectral energy distribution, thereby determining a characteristic temperature for the Galactic diffuse emission.
|
430 |
Disruption of Giant Molecular Clouds by Massive Star ClustersHarper-Clark, Elizabeth 09 January 2012 (has links)
The lifetime of a Giant Molecular Cloud (GMC) and the total mass of stars that form within it are crucial to the understanding of star formation rates across a whole galaxy. In particular, the stars within a GMC may dictate its disruption and the quenching of further star formation. Indeed, observations show that the Milky Way contains GMCs with extensive expanding bubbles while the most massive stars are still alive. Simulating entire GMCs is challenging, due to the large variety of physics that needs to be included, and the computational power required to accurately simulate a GMC over tens of millions of years. Using the radiative-magneto-hydrodynamic code Enzo, I have run many simulations of GMCs. I obtain robust results for the fraction of gas converted into stars and the lifetimes of the GMCs: (A) In simulations with no stellar outputs (or ``feedback''), clusters form at a rate of 30% of GMC mass per free fall time; the GMCs were not disrupted but contained forming stars. (B) Including ionization gas pressure or radiation pressure into the simulations, both separately and together, the star formation was quenched at between 5% and 21% of the original GMC mass. The clouds were fully disrupted within two dynamical times after the first cluster formed. The radiation pressure contributed the most to the disruption of the GMC and fully quenched star formation even without ionization. (C) Simulations that included supernovae showed that they are not dynamically important to GMC disruption and have only minor effects on subsequent star formation. (D) The inclusion of a few micro Gauss magnetic field across the cloud slightly reduced the star formation rate but accelerated GMC disruption by reducing bubble shell disruption and leaking. These simulations show that new born stars quench further star formation and completely disrupt the parent GMC. The low star formation rate and the short lifetimes of GMCs shown here can explain the low star formation rate across the whole galaxy.
|
Page generated in 0.1123 seconds