• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phylogeographic Structure and Genetic Variation in <i>Formica</i> Ants

Goropashnaya, Anna January 2003 (has links)
<p>The aim of this thesis is to study phylogeny, species-wide phylogeography and genetic diversity in <i>Formica</i> ants across Eurasia in connection with the history of biotic responses to Quaternary environmental changes.</p><p>The mitochondrial DNA phylogeny of Palaearctic <i>Formica</i> species supported the subgeneric grouping based on morphological similarity. The exception was that <i>F. uralensis</i> formed a separate phylogenetic group. The mitochondrial DNA phylogeny of the <i>F. rufa </i>group showed the division into three major phylogenetic groups: one with the species <i>F. polyctena</i> and <i>F. rufa</i>, one with <i>F. aquilonia</i>, <i>F. lugubris</i> and <i>F. paralugubris</i>, and the third one with <i>F. pratensis</i>.</p><p>West-east phylogeographic divisions were found in <i>F. pratensis</i> suggesting post-glacial colonization of western Europe and a wide area from Sweden to the Baikal Lake from separate forest refugia. In contrast, no phylogeographic divisions were detected in either <i>F. lugubris </i>or<i> F. exsecta</i>. Contraction of the distribution range to a single refugial area during the late Pleistocene and the following population expansion could offer a general explanation for the lack of phylogeographic structure across most of Eurasia in these species.</p><p>Sympatrically distributed and ecologically similar species <i>F. uralensis </i>and<i> F. candida</i> showed clear difference in the phylogeographic structure that reflected difference in their vicariant history. Whereas no phylogeographic divisions were detected in <i>F. uralensis</i> across Europe, <i>F. candida</i> showed a well-supported phylogeographic division between the western, the central and the southern group.</p><p>In socially polymorphic <i>F. cinerea</i>, the overall level of intrapopulation microsatellite diversity was relatively high and differentiation among populations was low, indicating recent historical connections. The lack of correspondence between genetic affinities and geographic locations of studied populations did not provide any evidence for differentiating between alternative hypotheses concerning the directions and sources of postglacial colonization of Fennoscandia.</p>
2

Phylogeographic Structure and Genetic Variation in Formica Ants

Goropashnaya, Anna January 2003 (has links)
The aim of this thesis is to study phylogeny, species-wide phylogeography and genetic diversity in Formica ants across Eurasia in connection with the history of biotic responses to Quaternary environmental changes. The mitochondrial DNA phylogeny of Palaearctic Formica species supported the subgeneric grouping based on morphological similarity. The exception was that F. uralensis formed a separate phylogenetic group. The mitochondrial DNA phylogeny of the F. rufa group showed the division into three major phylogenetic groups: one with the species F. polyctena and F. rufa, one with F. aquilonia, F. lugubris and F. paralugubris, and the third one with F. pratensis. West-east phylogeographic divisions were found in F. pratensis suggesting post-glacial colonization of western Europe and a wide area from Sweden to the Baikal Lake from separate forest refugia. In contrast, no phylogeographic divisions were detected in either F. lugubris or F. exsecta. Contraction of the distribution range to a single refugial area during the late Pleistocene and the following population expansion could offer a general explanation for the lack of phylogeographic structure across most of Eurasia in these species. Sympatrically distributed and ecologically similar species F. uralensis and F. candida showed clear difference in the phylogeographic structure that reflected difference in their vicariant history. Whereas no phylogeographic divisions were detected in F. uralensis across Europe, F. candida showed a well-supported phylogeographic division between the western, the central and the southern group. In socially polymorphic F. cinerea, the overall level of intrapopulation microsatellite diversity was relatively high and differentiation among populations was low, indicating recent historical connections. The lack of correspondence between genetic affinities and geographic locations of studied populations did not provide any evidence for differentiating between alternative hypotheses concerning the directions and sources of postglacial colonization of Fennoscandia.
3

Vibrational signals as indicators of soil fauna health? : A novel approach to environmental monitoring of ants

Fransson Forsberg, Joel January 2023 (has links)
Soil fauna provides processes of crucial importance for ecosystem functions, but our ability to observe their actions often depend on destructive methods where the integrity of the studied environment (the soil) is compromised. In this study, I develop and test a new generation of environmental monitoring tools that utilize vibrations made by soil macrofauna to inform about their performance and health. Three hypotheses were tested on forest ants (Formica sp.): (i) vibrations on a naturally occurring substrate can be used to measure the activity of ants, (ii) the vibrational signature of ants can inform us about the ants’ health, and (iii) behavior (locomotory activity, foraging etc.) of ants is correlated to specific vibrational signal characteristics. Vibrational signals from ant sub-populations (5 individuals/sample) were recorded on natural substrates (leaves) before and after exposure to sub-lethal levels of a contaminant with known negative effects on ants (imidacloprid). Activity was successfully detected from the inferred vibration oscillograms. However, neither the number of vibrational signals captured, or the signal characteristics changed after imidacloprid exposure, indicating that either the exposure was too low to generate a change in behavior or that the technique was unable to detect subtle changes in behavior. Signals of short duration and amplitude were generated by locomotory activity, but their intensity was dependent on the distance to the vibrometers laser focus point. Longer signal segments were either continuous, random, or rhythmic in their distribution. I suggest that these signals are a result of methodological artifacts, movement of multiple ants, and stridulation/drumming on the substrate, respectively. My findings suggest that this advanced monitoring tool is sensitive enough to capture activity from only a few ants, but the characteristics and number of captured signals are strongly affected by the measured substrate

Page generated in 0.064 seconds