Spelling suggestions: "subject:"immunoreactivity"" "subject:"gabaimmunoreactivity""
1 |
Experimental studies of spinal mechanisms associated with muscle fatigueKalezic, Ivana January 2004 (has links)
Muscle fatigue is ubiquitous in every day life.Muscle fatigue might be considered as an altered state of motor behaviour, which impairs motor performance. By contrast, muscle fatigue could also be considered a positive phenomenon, which protects muscle tissue from damage that might be incurred to it by overuse. The principal aim of the thesis was to explore some of the mechanisms of muscle fatigue at the spinal level in animal models.The activation of multiple motor units of a single calf muscle may influence contractile properties of its neighbouring, otherwise inactive units, providing evidence for spatial spreading of fatigue between different muscle parts. The release of metabolites, their action on inactive muscle units and the effects of local hypoxia are the most likely causes. Fatigue-induced metabolite shift in the interstitium provokes excitation and/or sensitisation of high-threshold afferent fibers, with complex effects on the spinal premotoneuronal network involved in the modulation of motoneuronal output. This was examined by studing the intrasegmental lamellar distribution of the lumbar spinal interneurons following fatiguing contractions of the triceps surae muscle. Furthermore, fatigue of calf muscles enhanced the activity of fusimotor neurons to these muscles irrespective of the regime of muscle activity (isometric vs. lengthening) in conditions that simulate locomotion. Altered fusimotor activity, through increased or maintained muscle spindle afferent responsiveness may be advantageous, providing support to the skeletomotor activity and enhanced information about muscle periphery to higher nervous centres. The particular effects of interneuronal network at motor input (presynaptic inhibition system) and output (recurrent inhibition system) stages were then addressed. Fatigue of triceps surae muscle induced a suppression of the monosynaptic reflex. The intensity of presynaptic inhibition increased, while the intensity of recurrent inhibition decreased. Post fatigue-evoked changes in monosynaptic reflexes and presynaptic inhibition indicate the possibility that high-threshold afferents inhibit group Ia terminals pre-synaptically, which would allow fatigue-induced signals from the muscle to reduce the relevance of proprioceptive feedback. Besides intrasegmental, intersegmental spreading of nociceptive signals was explored. Activation of sensory afferents from dorsal neck muscles by capsaicin induces powerful activation of interneurons located in the cervical spinal cord, as well as a widespread activation of cells in lumbar spinal cord segments. The results confirm the pivotal role of small diameter muscle afferents in the orchestration of segmental responses to fatigue and show complex interactions that may lead to limited accuracy of motor output. They also depict processes that may be related to, and even become precursors of chronic muscle pain.
|
2 |
Expression of C-Fos-Like Immunoreactivity in the Feline Brainstem in Response to Isometric Muscle Contraction and Baroreceptor Reflex Changes in Arterial PressureWilliams, Carole A., Loyd, Stephen D., Hampton, Toby A., Hoover, Donald B. 10 January 2000 (has links)
This study compared whether activation of muscle ergoreceptor afferents caused by isometric muscle contraction, activation of baroreceptor afferents induced by i.v. infusion of phenylephrine, or baroreceptor afferent inactivation, caused by carotid artery occlusion, elicit similar patterns of c-Fos induction in brainstem areas. Adult cats were anesthetized with α-chloralose, and in each case, the experimental intervention caused an increase in the arterial blood pressure. There were two sets of control experiments: in both, animals underwent the same surgical procedures but then either remained at rest for the entire study, or the tibial nerve was stimulated, as in the contraction group, following muscle paralysis with tubocurarine. Following the procedures, animals rested for 90 min to allow neuronal expression of c-Fos. Control cats showed very little c-Fos immunoreactivity (c-Fos-ir) in the brainstem. Muscle contraction induced c-Fos-ir expression mainly in the nucleus tractus solitarius, lateral reticular nucleus, lateral tegmental field, vestibular nucleus, subretrofacial nucleus, spinal trigeminal tract and in a lateral region of the periaqueductal grey (P 0.5-1.0). The majority of the c-Fos-ir was found in brainstem areas contralateral to the contracted muscle. In addition, muscle contraction induced c-Fos-ir in the dorsal horns of spinal segments L6-S1 on the ipsilateral side of the spinal cord. Phenylephrine infusion caused c-Fos-ir expression in the nucleus tractus solitarius, spinal trigeminal tract, solitary tract, and dorsal motor nucleus of the vagus. No c-Fos-ir was apparent in the periaqueductal grey. Carotid occlusions induced c-Fos-ir expression in the area postrema, nucleus tractus solitarius, solitary tract, and spinal trigeminal tract. Expression was bilateral. Areas that exhibited c-Fos-ir correspond to sites previously reported to release various neuropeptides in response to muscle contraction or carotid occlusions. These results indicate that the exercise pressor reflex and baroreflex activate similar, but not completely identical, sites in the brainstem.
|
Page generated in 0.0529 seconds