Spelling suggestions: "subject:"postsynaptic inhibition""
1 |
Rhythmic arm cycling differentially modulates stretch and H-reflex amplitudes in soleus musclePalomino, Andres Felipe 08 July 2011 (has links)
During rhythmic arm cycling soleus H-reflex amplitudes are reduced by modulation of group Ia presynaptic inhibition (Frigon et al, 2004). This reflex suppression is graded with the frequency of arm cycling (Loadman & Zehr 2007; Hundza & Zehr 2009) and 0.8 Hz is the minimum frequency to significantly reduce the soleus H-reflex (Hundza & Zehr 2009). Despite the data on modulation of the soleus H-reflex amplitude induced by rhythmic arm cycling, comparatively little is known about the modulation of stretch reflexes due to remote limb movement. Therefore, the present study was intended to explore the effect of arm cycling on stretch and H-reflex amplitudes in the soleus muscle. In so doing, additional information on the mechanism of action during rhythmic arm cycling would be revealed. Although both reflexes share the same afferent pathway, we hypothesized that stretch reflex amplitudes would be less suppressed by arm cycling because they are less inhibited by presynaptic inhibition (Morita et al, 1998). Failure to reject this hypothesis would add additional strength to the argument that Ia presynaptic inhibition is the mechanism modulating soleus H-reflex amplitude during rhythmic arm cycling. Participants were seated in a customized chair with feet strapped to footplates. Three motor tasks were performed: static control trials and arm cycling at 1 and 2 Hz. Soleus H-reflexes were evoked using single 1 ms pulses of electrical stimulation delivered to the tibial nerve at the popliteal fossa. A constant M-wave and ~6% MVC activation of soleus was maintained across conditions. Stretch reflexes were evoked using a vibratory shaker (ET-126; Labworks Inc). The shaker was placed over the triceps surae tendon and controlled by a custom written LabView program (single sinusoidal pulse at 100Hz). Results demonstrated that rhythmic arm cycling that was effective for conditioning soleus H-reflexes did not show a suppressive effect on the amplitude of the soleus stretch reflex. We suggest this indicates that stretch reflexes are less sensitive to conditioning by rhythmic arm movement, as compared to H-reflexes, due to the relative insensitivity of Ia presynaptic inhibition. / Graduate
|
2 |
NEUROBIOLOGICAL MECHANISMS OF FEAR GENERALIZATIONCullen, Patrick Kennedy 23 July 2013 (has links)
No description available.
|
3 |
Experimental studies of spinal mechanisms associated with muscle fatigueKalezic, Ivana January 2004 (has links)
Muscle fatigue is ubiquitous in every day life.Muscle fatigue might be considered as an altered state of motor behaviour, which impairs motor performance. By contrast, muscle fatigue could also be considered a positive phenomenon, which protects muscle tissue from damage that might be incurred to it by overuse. The principal aim of the thesis was to explore some of the mechanisms of muscle fatigue at the spinal level in animal models.The activation of multiple motor units of a single calf muscle may influence contractile properties of its neighbouring, otherwise inactive units, providing evidence for spatial spreading of fatigue between different muscle parts. The release of metabolites, their action on inactive muscle units and the effects of local hypoxia are the most likely causes. Fatigue-induced metabolite shift in the interstitium provokes excitation and/or sensitisation of high-threshold afferent fibers, with complex effects on the spinal premotoneuronal network involved in the modulation of motoneuronal output. This was examined by studing the intrasegmental lamellar distribution of the lumbar spinal interneurons following fatiguing contractions of the triceps surae muscle. Furthermore, fatigue of calf muscles enhanced the activity of fusimotor neurons to these muscles irrespective of the regime of muscle activity (isometric vs. lengthening) in conditions that simulate locomotion. Altered fusimotor activity, through increased or maintained muscle spindle afferent responsiveness may be advantageous, providing support to the skeletomotor activity and enhanced information about muscle periphery to higher nervous centres. The particular effects of interneuronal network at motor input (presynaptic inhibition system) and output (recurrent inhibition system) stages were then addressed. Fatigue of triceps surae muscle induced a suppression of the monosynaptic reflex. The intensity of presynaptic inhibition increased, while the intensity of recurrent inhibition decreased. Post fatigue-evoked changes in monosynaptic reflexes and presynaptic inhibition indicate the possibility that high-threshold afferents inhibit group Ia terminals pre-synaptically, which would allow fatigue-induced signals from the muscle to reduce the relevance of proprioceptive feedback. Besides intrasegmental, intersegmental spreading of nociceptive signals was explored. Activation of sensory afferents from dorsal neck muscles by capsaicin induces powerful activation of interneurons located in the cervical spinal cord, as well as a widespread activation of cells in lumbar spinal cord segments. The results confirm the pivotal role of small diameter muscle afferents in the orchestration of segmental responses to fatigue and show complex interactions that may lead to limited accuracy of motor output. They also depict processes that may be related to, and even become precursors of chronic muscle pain.
|
4 |
Atividade preparatória de circuitos neuronais medulares durante expectativa para contração muscular voluntária / Preparatory activity of spinal cord neuronal circuits for voluntary contractionMartins, Emerson Fachin 01 November 2007 (has links)
Antecedendo movimentos voluntariamente gerados, existe atividade neuronal encefálica que se inicia alguns segundos antes da execução deste movimento. Esta atividade preparatória é responsável pela elaboração de um plano de execução que alcança a via final comum para realização de um ato motor voluntário, os motoneurônios. Entretanto, na última década, evidências apontam para a participação de circuitos neuronais na medula espinhal apresentando padrão de atividade similar aos padrões observados em áreas encefálicas e que, possivelmente, estaria relacionado a uma atividade preparatória para o movimento voluntariamente gerado. Por este motivo, o presente trabalho teve por objetivo verificar a atividade de circuitos neuronais na medula espinhal durante diferentes instantes de proximidade da ação voluntariamente gerada em paradigma de tarefa motora com período de instrução. Para isso, inicialmente, 15 sujeitos saudáveis, sem histórico de doença neuromuscular foram submetidos ao protocolo experimental. O protocolo experimental constituiu-se do processo de recrutamento dos sujeitos, sua preparação para o ensaio dentro do ambiente experimental, bem como as orientações necessárias para execução dos procedimentos e paradigmas. Os procedimentos referem-se às etapas realizadas para captação do reflexo H, bem como desta captação sob a influência de técnica de condicionamento por inibição pré-sináptica. Essa captação ocorreu em janelas de aquisição em que o sujeito encontrava-se em repouso e em três instantes de expectativa para a execução de ação voluntária, estando o músculo sóleo atuando como agonista (flexão plantar) ou antagonista (dorsiflexão), em paradigma de tarefa motora voluntária com período de instrução. Após os registros, por meio de processamento dos sinais coletados, foi possível se calcular a amplitude pico-a-pico do reflexo H nas diferentes condições experimentais de proximidade da execução (1000, 600 e 200 milissegundos) e de atuação do músculo sóleo (agonista e antagonista) que foi usado para: (1) análise da variação da excitabilidade reflexa, em porcentagem da onda M máxima, (2) análise da ocorrência de inibição pré-sináptica e (3) análise da variação da inibição pré-sináptica, em porcentagem de inibição. Os resultados mostram que a porcentagem da onda M máxima aumentou significativamente nos três instantes de proximidade com os sujeitos estando em expectativa da execução da tarefa motora quando o músculo sóleo atuaria como agonista da contração, quando comparados com os registros obtidos nas mesmas condições em repouso. Contudo, somente a 200 ms da execução é que foi observado aumento da porcentagem da onda M máxima quando o músculo sóleo atuaria como antagonista. Inibição pré-sináptica ocorreu em todas as condições experimentais, contudo aumento significativo da porcentagem de inibição pré-sináptica foi somente observado a 200 ms da execução da tarefa motora em que o músculo sóleo atuaria como antagonista. Diferenças entre agonista e antagonista com relação ao padrão de excitabilidade reflexa foi somente observado a 600 ms de proximidade da execução da tarefa e essas diferenças com relação à porcentagem de inibição pré-sináptica foi somente detectada a 200 ms. Nossos resultados nos permitem concluir que circuitos neuronais na medula espinhal apresentam atividade no período preparatório para a execução de tarefa motora voluntária que podem estar relacionadas ao comportamento de expectativa da realização de uma ação motora eminente, bem como relacionada ao planejamento motor para a ação a longa proximidade da execução de movimentos. / There is brain activity preceding voluntary movements a few seconds before the execution of the movement. This preparatory activity is responsible for the execution plan that reaches the final common pathway, i.e., the motoneurons. In the last decade, there have been reports indicating the involvement of spinal cord circuits in the preparatory activity for movement. The present work has the objective of verifying the activity of spinal cord neuronal circuits at different times preceding a voluntary action, under an instructed delay period paradigm. Fifteen healthy subjects participated in the study. The protocol included an explanation of the experimental tasks. Electrophysiological recordings of the H reflex with and without presynaptic inhibition conditioning were employed. The epochs of H reflex recording were associated either with a resting period or with one of three pre-action periods. The subject received a cue at an appropriate time about the type of contraction: plantarflexion or dorsiflexion. Peak to peak H reflex values were computed in the control resting period and at 1000 ms, 600 ms and 200 ms before the action. Percent values of H amplitude with respect to maximum M values were computed as well as the level of presynaptic inhibition. The results have shown that the relative H reflex value increased significantly at the three premovement times for the soleus under an agonist contraction (i.e., plantarflexion) when compared to control. However, when the soleus was an antagonist to the contraction (i.e., dorsiflexion) there was a statistical difference in the H amplitude only at 200 ms before movement. Presynaptic inhibition occurred in all experimental conditions, however only at 200 ms before contraction there was a significant increase. Differences in reflex excitability between agonist and antagonist activity were only observed at 600 ms before action. On the other hand, differences in presynaptic inhibition were only found at 200 ms before contraction. The results indicated that spinal cord neuronal circuits are activated during the preparatory period preceding a voluntary action. These may be correlated with an expectancy behavior for the execution of an imminent motor action and also with the planning of a motor action at larger times preceding movement execution.
|
5 |
A Unified Model of Rule-Set Learning and SelectionPierson J. Fleischer (5929673) 16 January 2019 (has links)
A new, biologically plausible model of task-set learning that reproduces effects from both rule-learning experiments and task-switching experiments.<br>
|
6 |
Biomechanics and electrophysiology of sensory regulation during locomotion in a novel in vitro spinal cord-hindlimb preparationHayes, Heather Brant 18 October 2010 (has links)
The purpose of this dissertation was to gain insight into spinal sensory regulation during locomotion. To this end, I developed a novel in vitro spinal cord-hindlimb preparation (SCHP) composed of the isolated in vitro neonatal rat spinal cord oriented dorsal-up with intact hindlimbs locomoting on a custom-built treadmill or instrumented force platforms. The SCHP combines the neural and pharmacological accessibility of classic in vitro spinal cord preparations with intact sensory feedback from physiological hindlimb movements. thereby expanding our ability to study spinal sensory function. I then validated the efficacy of the SCHP for studying behaviorally-relevant, sensory-modulated locomotion by showing the impact of sensory feedback on in vitro locomotion. When locomotion was activated by serotonin and N-methyl D-aspartate, the SCHP produced kinematics and muscle activation patterns similar to the intact rat. The mechanosensory environment could significantly alter SCHP kinematics and muscle activitation patterns, showing that sensory feedback regulates in vitro spinal function. I further demonstrated that sensory feedback could reinforce or initiate SCHP locomotion.
Using the SCHP custom-designed force platform system, I then investigated how presynaptic inhibition dynamically regulates sensory feedback during locomotion and how hindlimb mechanics influence this regulation. I hypothesized that contralateral limb mechanics would modulate presynaptic inhibition on the ipsilateral limb. My results indicate that contralateral limb stance-phase loading regulates ipsilateral swing-phase sensory inflow. As contralateral stance-phase force increases, contralateral afferents act via a GABAergic pathway to increase ipsilateral presynaptic inhibition, thereby inhibiting sensory feedback entering the spinal cord. Such force-sensitive contralateral presynaptic inhibition may help preserve swing, coordinate the limbs during locomotion, and adjust the sensorimotor strategy for task-specific demands.
This work has important implications for sensorimotor rehabilitation. After spinal cord injury, sensory feedback is one of the few remaining inputs available for accessing spinal locomotor circuitry. Therefore, understanding how sensory feedback regulates and reinforces spinally-generated locomotion is vital for designing effective rehabilitation strategies. Further, sensory regulation is degraded by many neural insults, including spinal cord injury, Parkinson's disease, and stroke, resulting in spasticity and impaired locomotor function. This work suggests that contralateral limb loading may be an important variable for restoring appropriate sensory regulation during locomotion.
|
7 |
Atividade preparatória de circuitos neuronais medulares durante expectativa para contração muscular voluntária / Preparatory activity of spinal cord neuronal circuits for voluntary contractionEmerson Fachin Martins 01 November 2007 (has links)
Antecedendo movimentos voluntariamente gerados, existe atividade neuronal encefálica que se inicia alguns segundos antes da execução deste movimento. Esta atividade preparatória é responsável pela elaboração de um plano de execução que alcança a via final comum para realização de um ato motor voluntário, os motoneurônios. Entretanto, na última década, evidências apontam para a participação de circuitos neuronais na medula espinhal apresentando padrão de atividade similar aos padrões observados em áreas encefálicas e que, possivelmente, estaria relacionado a uma atividade preparatória para o movimento voluntariamente gerado. Por este motivo, o presente trabalho teve por objetivo verificar a atividade de circuitos neuronais na medula espinhal durante diferentes instantes de proximidade da ação voluntariamente gerada em paradigma de tarefa motora com período de instrução. Para isso, inicialmente, 15 sujeitos saudáveis, sem histórico de doença neuromuscular foram submetidos ao protocolo experimental. O protocolo experimental constituiu-se do processo de recrutamento dos sujeitos, sua preparação para o ensaio dentro do ambiente experimental, bem como as orientações necessárias para execução dos procedimentos e paradigmas. Os procedimentos referem-se às etapas realizadas para captação do reflexo H, bem como desta captação sob a influência de técnica de condicionamento por inibição pré-sináptica. Essa captação ocorreu em janelas de aquisição em que o sujeito encontrava-se em repouso e em três instantes de expectativa para a execução de ação voluntária, estando o músculo sóleo atuando como agonista (flexão plantar) ou antagonista (dorsiflexão), em paradigma de tarefa motora voluntária com período de instrução. Após os registros, por meio de processamento dos sinais coletados, foi possível se calcular a amplitude pico-a-pico do reflexo H nas diferentes condições experimentais de proximidade da execução (1000, 600 e 200 milissegundos) e de atuação do músculo sóleo (agonista e antagonista) que foi usado para: (1) análise da variação da excitabilidade reflexa, em porcentagem da onda M máxima, (2) análise da ocorrência de inibição pré-sináptica e (3) análise da variação da inibição pré-sináptica, em porcentagem de inibição. Os resultados mostram que a porcentagem da onda M máxima aumentou significativamente nos três instantes de proximidade com os sujeitos estando em expectativa da execução da tarefa motora quando o músculo sóleo atuaria como agonista da contração, quando comparados com os registros obtidos nas mesmas condições em repouso. Contudo, somente a 200 ms da execução é que foi observado aumento da porcentagem da onda M máxima quando o músculo sóleo atuaria como antagonista. Inibição pré-sináptica ocorreu em todas as condições experimentais, contudo aumento significativo da porcentagem de inibição pré-sináptica foi somente observado a 200 ms da execução da tarefa motora em que o músculo sóleo atuaria como antagonista. Diferenças entre agonista e antagonista com relação ao padrão de excitabilidade reflexa foi somente observado a 600 ms de proximidade da execução da tarefa e essas diferenças com relação à porcentagem de inibição pré-sináptica foi somente detectada a 200 ms. Nossos resultados nos permitem concluir que circuitos neuronais na medula espinhal apresentam atividade no período preparatório para a execução de tarefa motora voluntária que podem estar relacionadas ao comportamento de expectativa da realização de uma ação motora eminente, bem como relacionada ao planejamento motor para a ação a longa proximidade da execução de movimentos. / There is brain activity preceding voluntary movements a few seconds before the execution of the movement. This preparatory activity is responsible for the execution plan that reaches the final common pathway, i.e., the motoneurons. In the last decade, there have been reports indicating the involvement of spinal cord circuits in the preparatory activity for movement. The present work has the objective of verifying the activity of spinal cord neuronal circuits at different times preceding a voluntary action, under an instructed delay period paradigm. Fifteen healthy subjects participated in the study. The protocol included an explanation of the experimental tasks. Electrophysiological recordings of the H reflex with and without presynaptic inhibition conditioning were employed. The epochs of H reflex recording were associated either with a resting period or with one of three pre-action periods. The subject received a cue at an appropriate time about the type of contraction: plantarflexion or dorsiflexion. Peak to peak H reflex values were computed in the control resting period and at 1000 ms, 600 ms and 200 ms before the action. Percent values of H amplitude with respect to maximum M values were computed as well as the level of presynaptic inhibition. The results have shown that the relative H reflex value increased significantly at the three premovement times for the soleus under an agonist contraction (i.e., plantarflexion) when compared to control. However, when the soleus was an antagonist to the contraction (i.e., dorsiflexion) there was a statistical difference in the H amplitude only at 200 ms before movement. Presynaptic inhibition occurred in all experimental conditions, however only at 200 ms before contraction there was a significant increase. Differences in reflex excitability between agonist and antagonist activity were only observed at 600 ms before action. On the other hand, differences in presynaptic inhibition were only found at 200 ms before contraction. The results indicated that spinal cord neuronal circuits are activated during the preparatory period preceding a voluntary action. These may be correlated with an expectancy behavior for the execution of an imminent motor action and also with the planning of a motor action at larger times preceding movement execution.
|
8 |
Contribution du mécanisme d'inhibition présynaptique à l'induction de réactions posturales efficaces suite à une perturbation d'équilibreMiranda, Zoé 12 1900 (has links)
Le risque de chute est une problématique bien présente chez les personnes âgées ou ayant une atteinte neurologique et reflète un déficit des mécanismes neuronaux assurant l’équilibre. De précédentes études démontrent que l’intégration des informations sensorielles est essentielle au contrôle de l’équilibre et que l’inhibition présynaptique (IP) serait un mécanisme important dans le contrôle de la transmission sensorielle. Ainsi, le but de cette étude était d’identifier la contribution du mécanisme d’IP à l’induction de réponses posturales efficaces suite à une perturbation d’équilibre. Notre hypothèse est qu’une diminution d’IP contribuerait à l’induction des ces réponses, en augmentant l’influence de la rétroaction sensorielle sur les réseaux de neurones spinaux. Afin de démontrer cette hypothèse, nous avons d’abord évalué l’excitabilité spinale pendant les perturbations vers l’avant ou vers l’arrière, à l’aide du réflexe H. L’excitabilité spinale était modulée selon la direction de la perturbation et cette modulation
survenait dès 75 ou 100 ms (p<0.05), soit avant l’induction des réactions posturales. Puis, à
l’aide de techniques plus précises de convergence spinale, nous avons démontré que l’IP était diminuée dès 75 et 100 ms dans les deux directions, suggérant que la transmission des
informations sensorielles vers la moelle épinière est accrue juste avant le déclenchement de la réponse posturale. Cette étude met en évidence un mécanisme-clé permettant d’augmenter la rétroaction des informations sensorielles nécessaires à l’induction de réponses posturales appropriées. L’évaluation de ce mécanisme pourrait mener à une meilleure identification des individus à risque de chute. / Falls are a significant problem among the elderly or persons with a neurological impairment, and reflect a deficit in the nervous mechanisms underlying postural control. Previous research shows that the integration of sensory feedback is a crucial component of postural control and that presynaptic inhibition (PSI) plays an important role in controlling the sensory processing of information. The aim of this study was to identify the contribution of PSI to the induction of effective postural responses following an unexpected balance perturbation. We hypothesized that a decrease in PSI would contribute to the induction of these responses by increasing the influence of sensory feedback onto spinal networks during the perturbation. First we assessed the level of spinal excitability during perturbations, using the soleus H-reflex. Results show that spinal excitability is modulated according to the direction of the perturbation (forward and backward tilts) and that this modulation occurs 75 and 100 ms after tilt-onset in all subjects (p<0.05). To further estimate changes in PSI, spatial facilitation techniques were used. PSI was shown to decrease in both perturbation directions shortly after tilt onset at 75 and 100 ms (p<0.05), suggesting an increase in sensory transmission in the spinal cord. These observations suggest that sensory feedback is critical for the induction of effective postural responses and that impaired sensory transmission or integration, due to CNS lesions or ageing, may lead to certain balance deficits. Identifying patients with such impairments may improve fall risk-assessment and prevention.
|
9 |
Adaptações neurais na medula espinhal de humanos para diferentes tipos de treinamento físico / Neural changes in the spinal cord rights for different types of physical trainingMattos, Eugênia Casella Tavares de 11 March 2009 (has links)
Introdução:As adaptações neurais ao treinamento físico vêm sendo amplamente estudadas e a medula espinhal é um dos locais de possível adaptação. No entanto nenhuma avaliação longitudinal havia sido feita diretamente sobre as circuitarias inibitórias medulares. Até o presente momento as alterações eram somente suposições. O presente trabalho verificou as circuitarias medulares responsáveis pela inibição recíproca (IR) e inibição pré-sináptica (IPS) em sujeitos submetidos a diferentes treinamentos. Materiais e Métodos: Para o treino aeróbico (resistência) foram avaliados 25 soldados submetidos ao treinamento militar do Exército Militar Brasileiro. Foram feitas 3 avaliações uma pré-treino e outras duas com 3 e 9 meses após o inicio das atividades no ano de 2006. Outros 29 sujeitos foram divididos em 3 grupos: controle (permaneceram 8 semanas sem atividades de reinamento), grupo de treino de força máxima e treino de potência. Eles foram submetidos a 8 semanas de treino, realizado com séries de agachamento livre com peso. Para avaliação das circuitarias medulares foi utilizado o reflexo H do sóleus condicionado com estímulos no nervo fibular comum (NFC) - que inerva o músculo tibial anterior (TA). O intervalo entre o estímulo condicionante e o estímulo teste determinou a avaliação da IR, da inibição D1 e da inibição D2 (IPS). Outras variáveis também foram calculadas como: contração voluntária máxima isométrica (CVM) do sóleus e TA e seus respectivos eletromiogramas (EMG), relação elétrica e mecânica entre Hmax/Mmax e condicionamento do EMG do sóleus por estímulos no NFC. Foram feitas análises pareadas com teste t-student para o grupo militar e ANOVA two-way para comparação dos grupos de força máxima e potência com o grupo controle. Principais Resultados: O grupo do exército apresentou aumento na força do sóleus e do TA, juntamente com aumento no RMS do EMG do sóleus e do torque gerado pela onda Mmax, sem alterações nos relações Hmax/Mmax. O treinamento militar reduziu significativamente a inibição D1 e mostrou tendências a aumento da IPS. O grupo de força máxima não mostrou aumento de força isométrica, no entanto apresentou aumento na relação elétrica Hmax/Mmax, com concomitante redução da IR e aumento da IPS. O grupo de potência mostrou ganho na força máxima isométrica somente do sóleus. A capacidade de gerar torque reflexamente também aumentou neste grupo, com aumento significativo na relação mecânica Hmax/Mmax. Esta melhora na utilização do arco reflexo também foi verificada com redução da IPS e aumento da IR neste grupo.Conclusões: Estes resultados mostraram que a medula espinal sofre plasticidade nas vias inibitórias IR, inibição D1 e D2, e que esta plasticidade é dependente do tipo de tarefa realizada. / Introduction: Neural adaptations with physical training have been widely studied. The spinal cord is a possible locus of adaptation. However, longitudinal studies that evaluate directly the spinal cord pathways have not been found in the literature. Therefore, all reports from the literature justify changes found in measured responses to exercise by hypotheses on spinal cord mechanisms. This study had the objective of measuring features of specific spinal cord pathways to check if they change according to the type of physical training. The pathways related to reciprocal inhibition (RI) and pre-synaptic inhibition (PSI) were investigated in subjects undergoing different trainings. Materials and Methods: For endurance training 25 soldiers were subjected to military training of the Brazilian Army. Evaluations were made three times, one previous to the beginning of the activity and twice post-training (within 3 and 9 months). Other 29 subjects were divided into: control group (with no training), maximal strength group and power group. They were subjected to 8 weeks of training with series of squat movements. The soleus H reflex conditioning with stimuli in the common peroneal nerve (CPN) was used to evaluate the spinal cord pathways. The interval between the conditioning and the test stimulus determine the assessment of RI, D1 inhibition and D2 inhibition (PSI). Other variables were also calculated: maximum voluntary isometric contraction from soleus and tibialis anterior and their electromyograms (EMG), electrical and mechanical Hmax/Mmax ratio and 3 inhibitions over the soleus EMG conditioned by stimuli to the CPN. The results were analyzed with paired t-student test for the military group and with two-way ANOVA to compare the maximal strength and power groups with the control group. Main Results: The military group had increased strength of the soleus and the TA muscles, with an increase in the RMS of the soleus EMG. This group also increased the torque generated by the Mmax-wave, without changes in Hmax/Mmax ratio. The military training significantly reduced D1 inhibition and showed tendencies to increase the PSI. The maximal strength group showed no differences in isometric strength, but had increased Hmax/Mmax ratio with concomitant reduction of RI and increased PSI. The power group increased isometric strength only for the soleus muscle. This group also improved the ability to generate torque by reflex pathways, with significant increase in the mechanical Hmax/Mmax ratio, with a reduction of PSI and increase of RI. Conclusions: These results show that spinal cord plasticity occurs in the inhibitory pathways of reciprocal inhibition, D1 inhibition and D2 inhibition (pre-synaptic inhibition), and that plasticity is dependent on the type of trained movement.
|
10 |
Adaptações neurais na medula espinhal de humanos para diferentes tipos de treinamento físico / Neural changes in the spinal cord rights for different types of physical trainingEugênia Casella Tavares de Mattos 11 March 2009 (has links)
Introdução:As adaptações neurais ao treinamento físico vêm sendo amplamente estudadas e a medula espinhal é um dos locais de possível adaptação. No entanto nenhuma avaliação longitudinal havia sido feita diretamente sobre as circuitarias inibitórias medulares. Até o presente momento as alterações eram somente suposições. O presente trabalho verificou as circuitarias medulares responsáveis pela inibição recíproca (IR) e inibição pré-sináptica (IPS) em sujeitos submetidos a diferentes treinamentos. Materiais e Métodos: Para o treino aeróbico (resistência) foram avaliados 25 soldados submetidos ao treinamento militar do Exército Militar Brasileiro. Foram feitas 3 avaliações uma pré-treino e outras duas com 3 e 9 meses após o inicio das atividades no ano de 2006. Outros 29 sujeitos foram divididos em 3 grupos: controle (permaneceram 8 semanas sem atividades de reinamento), grupo de treino de força máxima e treino de potência. Eles foram submetidos a 8 semanas de treino, realizado com séries de agachamento livre com peso. Para avaliação das circuitarias medulares foi utilizado o reflexo H do sóleus condicionado com estímulos no nervo fibular comum (NFC) - que inerva o músculo tibial anterior (TA). O intervalo entre o estímulo condicionante e o estímulo teste determinou a avaliação da IR, da inibição D1 e da inibição D2 (IPS). Outras variáveis também foram calculadas como: contração voluntária máxima isométrica (CVM) do sóleus e TA e seus respectivos eletromiogramas (EMG), relação elétrica e mecânica entre Hmax/Mmax e condicionamento do EMG do sóleus por estímulos no NFC. Foram feitas análises pareadas com teste t-student para o grupo militar e ANOVA two-way para comparação dos grupos de força máxima e potência com o grupo controle. Principais Resultados: O grupo do exército apresentou aumento na força do sóleus e do TA, juntamente com aumento no RMS do EMG do sóleus e do torque gerado pela onda Mmax, sem alterações nos relações Hmax/Mmax. O treinamento militar reduziu significativamente a inibição D1 e mostrou tendências a aumento da IPS. O grupo de força máxima não mostrou aumento de força isométrica, no entanto apresentou aumento na relação elétrica Hmax/Mmax, com concomitante redução da IR e aumento da IPS. O grupo de potência mostrou ganho na força máxima isométrica somente do sóleus. A capacidade de gerar torque reflexamente também aumentou neste grupo, com aumento significativo na relação mecânica Hmax/Mmax. Esta melhora na utilização do arco reflexo também foi verificada com redução da IPS e aumento da IR neste grupo.Conclusões: Estes resultados mostraram que a medula espinal sofre plasticidade nas vias inibitórias IR, inibição D1 e D2, e que esta plasticidade é dependente do tipo de tarefa realizada. / Introduction: Neural adaptations with physical training have been widely studied. The spinal cord is a possible locus of adaptation. However, longitudinal studies that evaluate directly the spinal cord pathways have not been found in the literature. Therefore, all reports from the literature justify changes found in measured responses to exercise by hypotheses on spinal cord mechanisms. This study had the objective of measuring features of specific spinal cord pathways to check if they change according to the type of physical training. The pathways related to reciprocal inhibition (RI) and pre-synaptic inhibition (PSI) were investigated in subjects undergoing different trainings. Materials and Methods: For endurance training 25 soldiers were subjected to military training of the Brazilian Army. Evaluations were made three times, one previous to the beginning of the activity and twice post-training (within 3 and 9 months). Other 29 subjects were divided into: control group (with no training), maximal strength group and power group. They were subjected to 8 weeks of training with series of squat movements. The soleus H reflex conditioning with stimuli in the common peroneal nerve (CPN) was used to evaluate the spinal cord pathways. The interval between the conditioning and the test stimulus determine the assessment of RI, D1 inhibition and D2 inhibition (PSI). Other variables were also calculated: maximum voluntary isometric contraction from soleus and tibialis anterior and their electromyograms (EMG), electrical and mechanical Hmax/Mmax ratio and 3 inhibitions over the soleus EMG conditioned by stimuli to the CPN. The results were analyzed with paired t-student test for the military group and with two-way ANOVA to compare the maximal strength and power groups with the control group. Main Results: The military group had increased strength of the soleus and the TA muscles, with an increase in the RMS of the soleus EMG. This group also increased the torque generated by the Mmax-wave, without changes in Hmax/Mmax ratio. The military training significantly reduced D1 inhibition and showed tendencies to increase the PSI. The maximal strength group showed no differences in isometric strength, but had increased Hmax/Mmax ratio with concomitant reduction of RI and increased PSI. The power group increased isometric strength only for the soleus muscle. This group also improved the ability to generate torque by reflex pathways, with significant increase in the mechanical Hmax/Mmax ratio, with a reduction of PSI and increase of RI. Conclusions: These results show that spinal cord plasticity occurs in the inhibitory pathways of reciprocal inhibition, D1 inhibition and D2 inhibition (pre-synaptic inhibition), and that plasticity is dependent on the type of trained movement.
|
Page generated in 0.1252 seconds