• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of FLDPC Coding Scheme for Adaptive Coding in Aeronautical Telemetry

Luo, Qinghua, Peng, Yu, Wan, Wei, Huang, Tao, Fan, YaNing, Peng, Xiyuan 10 1900 (has links)
ITC/USA 2015 Conference Proceedings / The Fifty-First Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2015 / Bally's Hotel & Convention Center, Las Vegas, NV / The aeronautical telemeter channel is characterized by Multipath interference, Doppler shift and rapid changes in channel behavior. In addition to transmission error during aeronautical telemeter, transmission losing also exists. In this paper, we investigate the correction of transmission error and processing of telemetry transmission losing, and propose an adaptive coding scheme, which organic combines Fountain code and low density parity check (LDPC) code. We call it fountain LDPC (FLDPC) coding. In the coding scheme, The LDPC code is explored to perform transmission error correction, while, the problem of transmission losing is resorted to fountain code. So FLDPC is robust for transmission losing and transmission error. Moreover, without knowing any of these the channel information, FLDPC can adapt the data link and avoid the interference through adjusting the transmission rate. Experimental results illustrated that a signification improvement in transmission reliability and transmitting efficiency can be achieved by using the FLDPC coding.
2

Cooperative DVB-H: Raptor-Network Coding Protocols for Reliable and Energy Efficient Multimedia Communications

BENACEM, Lucien 05 August 2010 (has links)
Reliable and energy-efficient delivery of multimedia to mobile terminals in dynamic networks is a very challenging problem. In this thesis, we focus on a cooperative extension to the Digital Video Broadcasting – Handheld (DVB-H) standard, forming a cooperative broadcast network whereby terminal-to-terminal cooperation creates a distributed form of multi-input-multi-output (MIMO) that supplements existing fixed network infrastructure. First, we develop a novel and computationally-efficient hierarchical Markov model that is able to accurately perform a cross-layer packet error mapping between the physical and transport layers of the DVB-H/IPDC (IP DataCast) protocol stack. We then construct a discrete-event simulator in MATLAB® that incorporates all of the necessary modules to conduct dynamic multiterminal network simulations. Next, the convergence of cooperative wireless communication, Raptor application layer forward error correction (AL-FEC) and Network Coding (NC) is examined. Originally proposed for broadcasting over the Internet, the application of Raptor codes to wireless cooperative communications networks has been limited to date, but they have been mandated for use in DVB-H. Network coding is used to reduce energy consumption by opportunistically recombining and rebroadcasting required combinations of packets. Two novel coding-enabled cooperative relaying protocols are developed for multicast and multiple unicast file distribution scenarios that are transparent, fully distributed, and backwards compatible with today's systems. Our protocols are able to exploit several different forms of diversity inherent to modern wireless networks, including spatial diversity, radio interface diversity, and symbol diversity. Extensive simulations show that our protocols simultaneously achieve breakthroughs in network energy efficiency and reliability for different terminal classes and densities, allowing greatly improved user experiences. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2010-08-03 19:45:54.943

Page generated in 0.0454 seconds