• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Determinação de frações de volume em fluxos bifásicos óleo-gás e água-gás utilizando redes neurais artificiais e densitometria gama

Peixoto, Philippe Netto Belache, Instituto de Engenharia Nuclear 04 1900 (has links)
Submitted by Almir Azevedo (barbio1313@gmail.com) on 2016-05-13T13:22:37Z No. of bitstreams: 0 / Made available in DSpace on 2016-05-13T13:22:37Z (GMT). No. of bitstreams: 0 Previous issue date: 2016-04 / Este trabalho apresenta uma metodologia baseada nos princípios de atenuação de raios gama para a identificação de frações de volume em sistemas bifásicos compostos por óleo-gás e água-gás que são encontrados na indústria petrolífera offshore e onshore. Esta metodologia baseia-se no reconhecimento de contagens por segundo no fotopico da fonte de radiação, utilizando um sistema de detecção composto por um detector de Nal(TI), uma fonte de Cs137 sem colimação posicionada a 180º com relação ao detector em um regime de fluxo estratificado liso. A modelagem matemática para a simulação computacional utilizando o código Monte Carlo N-Particle eXtended (MCNP-X) foi realizada utilizando as medições experimentais das características do detector (resolução energética e eficiência), das características dos materiais água e óleo (densidade e coeficiente de atenuação) e a medição das frações de volume. Para a predição destas frações foram utilizadas redes neurais artificiais (RNAs) e para se obter um treinamento adequado das RNAs para a predição das frações de volume foram simuladas no código MCNP-X um maior número de frações de volume. Dados experimentais foram utilizados no conjunto de padrões necessários para a validação das RNAs e os dados gerados por meio do código computacional MCNP-X foram utilizados nos conjuntos de treinamento e teste das RNAs. Foram utilizadas RNAs do tipo feed-forward multilayer perceptron (MLP) e analisadas duas funções de treinamento, Levenberg-Marquadt (LM) e gradiente descendente com momento (GDM), ambas utilizando o algoritmo de treinamento Backpropagation. As RNAs identificaram corretamente as frações de volume no sistema multifásico, com erros relativos médios inferiores a 1,21%, possibilitando a aplicação desta metodologia para tal propósito

Page generated in 0.0379 seconds