• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Random precision some applications of fractals and cellular automata in music composition /

Karaca, Igor January 2005 (has links)
Thesis (D. M. A.)--Ohio State University, 2005. / Title from first page of PDF file. Document formatted into pages; contains vii, 133 p.; also includes graphics (some col.). Includes bibliographical references (p. 47-48). Available online via OhioLINK's ETD Center.
2

Interactive evolutionary 3D fractal modeling.

January 2009 (has links)
Pang, Wenjun. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 83-88). / Abstracts in English and Chinese. / ACKNOWLEDGEMENTS --- p.ii / ABSTRACT --- p.iv / 摘要 --- p.v / CONTENTS --- p.vi / List of Tables --- p.viii / List of Figures --- p.ix / Chapter 1. --- INTRODUCTION --- p.1 / Chapter 1.1 --- Recent research work --- p.4 / Chapter 1.2 --- Objectives --- p.8 / Chapter 1.3 --- Thesis Organization --- p.10 / Chapter 2. --- FRACTAL MODELING --- p.12 / Chapter 2.1 --- Fractal and Fractal Art --- p.12 / Chapter 2.2 --- Fractal Geometry --- p.15 / Chapter 2.3 --- Construction of Fractals --- p.21 / Chapter 2.4 --- Fractal Measurement and Aesthetics --- p.27 / Chapter 3. --- OVERVIEW OF EVOLUTIONARY DESIGN --- p.30 / Chapter 3.1 --- Initialization --- p.33 / Chapter 3.2 --- Selection --- p.33 / Chapter 3.3 --- Reproduction --- p.34 / Chapter 3.4 --- Termination --- p.36 / Chapter 4. --- EVOLUTIONARY 3D FRACTAL MODELING --- p.38 / Chapter 4.1 --- Fractal Construction --- p.38 / Chapter 4.1.1 --- Self-similar Condition of Fractal --- p.38 / Chapter 4.1.2 --- Fractal Transformation (FT) IFS Formulation --- p.39 / Chapter 4.1.3 --- IFS Genotype and Phenotype Expression --- p.41 / Chapter 4.2 --- Evolutionary Algorithm --- p.43 / Chapter 4.2.1 --- Single-point Crossover --- p.45 / Chapter 4.2.2 --- Arithmetic Gaussian mutation --- p.45 / Chapter 4.2.3 --- Inferior Elimination --- p.46 / Chapter 4.3 --- Interactive Fine-tuning using FT IFS --- p.46 / Chapter 4.4 --- Gaussian Fitness Function --- p.48 / Chapter 5. --- GAUSSIAN AESTHETIC FITNESS FUNCTION --- p.49 / Chapter 5.1 --- Fitness Considerations --- p.50 / Chapter 5.2 --- Fitness Function Formulation --- p.53 / Chapter 5.3 --- Results and Discussion on Fitness Function --- p.55 / Chapter 6. --- EXPERIMENT RESULTS and DISCUSSION --- p.59 / Chapter 6.1 --- Experiment of Evolutionary Generation --- p.59 / Chapter 6.2 --- Comparison on Different Methods --- p.60 / Chapter 7. --- 3D FRACTALS RENDERING and APPLICATION --- p.62 / Chapter 7.1 --- Transforming Property and User Modification --- p.62 / Chapter 7.2 --- Visualization and Rendering of 3D Fractals --- p.66 / Chapter 7.3 --- Applications in Design --- p.74 / Chapter 8. --- CONCLUSIONS and FUTURE WORK --- p.81 / Chapter 8.1 --- Conclusions --- p.81 / Chapter 8.2 --- Future Work --- p.81 / BIBLIOGRAPHY --- p.83 / Appendix --- p.89 / Marching Cubes Method --- p.89
3

Fractal analysis applied to ancient Egyptian monumental art

Unknown Date (has links)
The study of ancient Egyptian monumental art is based on subjective and qualitative analyses by art historians and Egyptologists who use the change in stylistic trends as Dynastic chronological markers. The art of the ancient Egyptians is recognized the world over due to its specific and consistent style that lasted the whole of Dynastic Egypt. This artwork exhibits fractal qualities that support the applicability of applying fractal analysis as a quantitative and statistical tool to be used in this field. In this thesis, I show the fractality of ancient Egyptian monumental art by analyzing black and white line drawings of twenty-eight spearate bas-reliefs with three separate programs : Benoit 1.3, ImageJ, and Fractal3e. After preparing the images with GIMP2 software - used to remove non-original lines - I analyzed each image using the fractal box-counting analysis function in the above programs and calculated their fractal dimension, D. The resulting fractal dimension supported the consistency visually identified in the artwork from ancient Egypt, both chronologically and geographically. / by Jessica Robkin. / Thesis (M.A.)--Florida Atlantic University, 2012. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.

Page generated in 0.0613 seconds