Spelling suggestions: "subject:"fractional PID"" "subject:"tractional PID""
1 |
Implementation and Tuning of PID, Fractional PID and LA Controllers for pH ControlArdinugroho, Servatius Bismanditio 25 January 2019 (has links)
Maintaining the pH of a fluid or a solution at a specific value is a concern in many industrial processes, wastewater management, and food and pharmaceutical production. Given the importance of controlling pH in many processes, the objective of this thesis is to study and compare the effectiveness of some controller algorithms to control the pH of a process. In this study, the performance of three controller algorithms, namely PID, fractional PID and LA controllers, is evaluated for the control of a simple neutralization process using conventional controller performance metrics. Performance metrics used are the response time, the Integral of the Time weighted Absolute Error (ITAE), the Integral of the Squared Error (ISE), and the Integral of the Squares of the changes (ΔU) in the manipulated variable (ISDU). The three controllers were therefore tuned to minimize one or a combination of the controller performance metrics. Results show that PID, fractional PID and LA controllers implemented and tested in this research are all worthy controllers for maintaining pH of the neutralization process. Simulation results show that the three controllers can be used with confidence to cope with the high nonlinearity of a pH neutralization process provided that the process is properly designed. The relative small gain in performance obtained with the fractional PID controller, compared to a linear PID controller, suggests that it is not worth resorting to a fractional PID controller given its complexity and higher computation effort. Results show that PID and LA controllers are easy to implement with short response time and low ITAE and ISDU performance metrics.
|
2 |
Conception, Synthèse et Application d’une Nouvelle Commande Robuste par PID Fractionnaire pour Les Onduleurs Multiniveaux / Design, Synthesis and Application of a New Robust Control by Fractional PID for Multilevel InvertersTehrani, Kambiz Arab 15 November 2010 (has links)
Cette thèse présente une nouvelle extension d’onduleur multiniveaux, appelé ‘Multi Neutral Point’ (MNP). Cet onduleur est déduit des topologies des structures multiniveaux ‘Neutral Point Clamped’ (NPC) et ‘Multi Point Clamped’ (MPC). Les intérêts de cette extension sont: l’absence de diodes de bouclage, la possibilité de disposer de tous les nombres de niveaux, pairs et impairs et possibilité de fonctionner en mode dégradé. Nous avons élaboré une commande rapprochée simple des transistors de puissance, d’abord pour un MNP à 3 niveaux, ensuite pour les nombres de niveaux supérieurs. Nous avons comparé les pertes de puissance d’un onduleur MNP et d’un onduleur NPC. Les pertes de l’onduleur MNP sont largement inférieures à celles de l’onduleur NPC. Dans l’optique de contrôler en courant l’onduleur MNP, une stratégie nouvelle par régulateur PID d’ordre fractionnaire est également développée. Ce contrôle permet de diminuer nettement les erreurs d’amplitude et de phase entre le courant de référence et le courant de charge. La méthode nécessite le réglage des différents paramètres de contrôle en utilisant le principe d'optimisation ‘’multi-objectif’’. Le fonctionnement de l’ensemble convertisseur-contrôle-commande est enfin largement validé par simulation et par expérimentation / This thesis presents a new extension of multilevel inverters, called 'Multi Neutral Point' (MNP). This topology is deduced from Neutral Point Clamped (NPC) and Multi Point Clamped (MPC) structures. The advantage of this extension is twofold: the absence of clamping diodes and the possibility of operating on all the numbers of levels (even and odd). We have developed a simple command; we first present the command strategy for a three levels MNP, then for a five level MNP. We have compared the power losses in the power switches of an MNP and an NPC. The power losses for an MNP are far below those of the NPC inverter. For this inverter model, we have chosen a robust current control by a fractional PID controller. This control strategy can sharply reduce the amplitude and the phase errors between the reference current and the load one. This method requires the setting of various control parameters thanks to the principle of ‘’multiobjective optimization.'' In the end the set of converter-control command is validated by simulation and experimentation; the simulated and experimental results match very well
|
Page generated in 0.08 seconds