• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Protein arginine methyltransferase 5 (PRMT5) is an essential regulator of the cellular response to ionizing radiation and a therapeutic target to enhance radiation therapy for prostate cancer treatment

Jacob Louis Owens (9133214) 05 August 2020 (has links)
Prostate cancer is one of the most frequently diagnosed cancers and failure to manage localized disease contributes to the majority of deaths. Radiation therapy (RT) is a common treatment for localized prostate cancer and uses ionizing radiation (IR) to damage DNA. Although RT is potentially curative, tumors often recur and progress to terminal disease. The cellular response to RT is multidimensional. For example, cells respond to a single dose of IR by activating the DNA damage response (DDR) to repair the DNA. Targeting proteins involved in the DDR is an effective clinical strategy to sensitize cancer cells to RT. However, multiple radiation treatments, as in fractionated ionizing radiation (FIR), can promote neuroendocrine differentiation (NED). FIR-induced NED is an emerging resistance mechanism to RT and tumors that undergo NED are highly aggressive and remain incurable.<br><br> Currently, the only clinical approach that improves RT for prostate cancer treatment is androgen deprivation therapy (ADT). ADT blocks androgen receptor (AR) signaling which inhibits the repair of DNA damage. In 2017, my lab reported that targeting Protein arginine methyltransferase 5 (PRMT5) blocks AR protein expression. Therefore, targeting PRMT5 may also sensitize prostate cancer cells to RT via a novel mechanism of action.<br><br> This dissertation focuses on the role of PRMT5 in the cellular response to IR and the goal of my work is to validate PRMT5 as a therapeutic target to enhance RT for prostate cancer treatment. I demonstrate that PRMT5 has several roles in the cellular response to IR. Upon a single dose of IR, PRMT5 cooperates with pICln to function as a master epigenetic activator of DDR genes and efficiently repair IR-induced DNA damage. There is an assumption in the field that the methyltransferase activity and epigenetic function of PRMT5 is dependent on the cofactor MEP50. I demonstrate that PRMT5 can function independently of MEP50 and identify pICln as a novel epigenetic cofactor of PRMT5. During FIR, PRMT5, along with both cofactors MEP50 and pICln, are essential for initiation of NED, maintenance of NED, and cell survival. Targeting PRMT5 also sensitizes prostate cancer xenograft tumors in mice to RT, significantly reduces and delays tumor recurrence, and prolongs overall survival. Incredibly, while 100% of control mice died due to tumor burden, targeting PRMT5 effectively cured ~85% of mice from their xenograft tumor. Overall, this work provides strong evidence for PRMT5 as a therapeutic target and suggests that targeting PRMT5 during RT should be assessed clinically.<br>

Page generated in 0.15 seconds