• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the relationships between microstructure and mechanical properties of TRIP-assisted multiphase steels : strength, ductility, fracture and fatigue

Lacroix, Gauthier 23 November 2007 (has links)
In the context of sustainable development, steelmakers and automotive manufacturers decided for some years now to join their efforts to promote the development and use of advanced high strength steels such as the present TRIP steels in order to reduce the fuel consumption and emission of greenhouse gas. These multiphase steels contain some retained austenite, a ductile phase that can transform into hard and brittle martensite during a mechanical solicitation. One the one hand, this transformation improves the mechanical properties during plasticity by bringing about an additional work-hardening. On the other hand, the appearence of a hard and brittle phase can give rise to premature cracking after necking. Knowing the good influence of martensitic transformation on the work-hardening, this Thesis starts with the characterisation of the relationship between transformation rates and testing conditions. It appears that, for each testing condition, there is an optimum austenite stability that leads to a maximum uniform strain. After necking under monotonic loading conditions, the damage mechanisms that takes place in these steels has been characterised. It can be concluded that the TRIP-aided steels that present low or moderate austenite stability behave exactly like Dual-Phase steels, in which martensite replaces retained austenite. However, a very stable retained austenite brings about a significant toughness improvement by providing an additional work-hardening contribution in the necking zone. The mechanical behaviour of these steels has also been characterised under cyclic loading conditions. The results indicate that, for particular loading conditions (i.e. low load levels), the martensitic transformation improves the fatigue properties.
2

On the relationships between microstructure and mechanical properties of TRIP-assisted multiphase steels : strength, ductility, fracture and fatigue

Lacroix, Gauthier 23 November 2007 (has links)
In the context of sustainable development, steelmakers and automotive manufacturers decided for some years now to join their efforts to promote the development and use of advanced high strength steels such as the present TRIP steels in order to reduce the fuel consumption and emission of greenhouse gas. These multiphase steels contain some retained austenite, a ductile phase that can transform into hard and brittle martensite during a mechanical solicitation. One the one hand, this transformation improves the mechanical properties during plasticity by bringing about an additional work-hardening. On the other hand, the appearence of a hard and brittle phase can give rise to premature cracking after necking. Knowing the good influence of martensitic transformation on the work-hardening, this Thesis starts with the characterisation of the relationship between transformation rates and testing conditions. It appears that, for each testing condition, there is an optimum austenite stability that leads to a maximum uniform strain. After necking under monotonic loading conditions, the damage mechanisms that takes place in these steels has been characterised. It can be concluded that the TRIP-aided steels that present low or moderate austenite stability behave exactly like Dual-Phase steels, in which martensite replaces retained austenite. However, a very stable retained austenite brings about a significant toughness improvement by providing an additional work-hardening contribution in the necking zone. The mechanical behaviour of these steels has also been characterised under cyclic loading conditions. The results indicate that, for particular loading conditions (i.e. low load levels), the martensitic transformation improves the fatigue properties.
3

MICROSTRUCTURAL CONTROLS ON MACRO-SCALE PROPERTIES OF ROCK

Liyang Jiang (12476667) 01 June 2022 (has links)
<p>Two longstanding goals in subsurface science are to induce fractures with a desired geometry to adaptively control the interstitial geometry of existing fractures in response to changing subsurface conditions. Many energy and water-related engineering applications that use induced fractures to withdraw and inject fluids from subsurface reservoirs occur in some sedimentary rock.  Sedimentary rock such as shales often exhibit anisotropic mechanical properties because of bedding, layering and mineral texture.  These structural and textural features also affect fracture formation and in turn the resulting fracture geometry. Understanding the interplay between the microscopic mineral fabric and structure and how it effects fracture geometry is important for the prediction of the geometry of induced fractures and to the determination of the most ideal conditions for maximizing energy production and minimizing leaks from sequestration sites in the subsurface. </p> <p><br></p> <p>This Ph.D. thesis research focuses on the formation and geometry of fractures in anisotropic rock and the identification of geophysical signatures of fracture formation using additively manufactured gypsum rock analogs. Specifically, the work is grouped into three topics: (1) material controls on fracture geometry, toughness and roughness in additively manufactured rocks; (2) acoustic emissions (AE) during fracture formation in anisotropic additively manufactured rocks; and (3) determination of the effect of fluid-filled oriented voids in fractures on compressional to shear wave conversions. </p> <p><br></p> <p>For topic (1), unconfined compressive strength (UCS), Brazilian and 3-point bending (3PB) tests under pure and mixed mode mechanical tests were performed on cast and 3D printed gypsum samples that were characterized using 3D Xray microscopy, Xray Diffraction and SEM to examine the micro-structure of the samples. Research on topic 1 discovered microstructural controls on fracture surface roughness and the failure behavior of anisotropic rock and that the failure mode (tensile, mixed mode I and II, mixed mode I and III) affects the fracture propagation path and the surface roughness which is controls to the flow paths through a fracture. The results suggest that detailed mineralogical studies of mineral texture/fabric in laboratory or core samples is important to unravel failure strength, surface roughness, and how fractures propagate in layered geological media. </p> <p><br></p> <p>For topic (2), UCS tests were performed with concurrent measurements of acoustic emissions (AE) on cylindrical specimens: cast gypsum (CG) samples, and 3D printed (3DP) samples with five different orientations of bassanite layer and gypsum texture relative to the loading direction. Mechanical properties and induced fracture surface information were compared with the collected the AE signals to study if there is a way to tell the differences between the induced fracture surfaces with the AE signals patterns together with loading data. Examination of the AE signal amplitude from post-peak loading revealed that more ductile behavior was associated with more AE events that occurred over a longer period of time, and the resultant fracture surfaces were rougher than for narrow time distributions of events. </p> <p><br></p> <p>For topic (3), a detail study of fracture void orientation was performed using ultrasonic compressional, P, and shear, S, waves to determine how energy is partitioned when P-to-S or S-to-P conversions occur for waves normally incident on an air-filled or fluid-filled fracture. In this study, experiments and computer simulations were performed to demonstrate the link among cross-coupling stiffness, micro-crack orientation and energy partitioning into P, S, and P-S/S-P wave. The cross-coupling stiffness was created by 3D printing samples with linear arrays of micro-cracks oriented at  $0^o$, $\pm15^o$, $\pm30^o$, $\pm45^o$, $\pm60^o$, $\pm75^o$, and $90^o$. For $45^o$ orientation, measurements were made on air-filled and fluid-filled (silicon oil). For the air-filled fractures, the observed energy partitioning matched the simulated behavior obtained from discontinuous Galerkin simulations. Information on local fracture geometry is contained in the far-field waves. When filled with a viscous fluid, the P- and S- waves amplitude exhibited slight increases and decreases, respectively. The P-to-S converted mode amplitude decreased 30\% with an increase in fluid viscosity from 1–300kcSt. This suggests that P-S converted mode provides a potential method to remotely probe changes in fluid viscosity in fractures. </p> <p><br></p> <p>The work from the 3 research topics demonstrated that micro-scale structure impacts macroscale behavior and signals used for monitoring the condition of a rock. Additively manufactured samples enabled the exploration and determination of (1) the impact of mineral fabric orientation in layered media on failure load, fracture propagation path, and fracture surface roughness, (2) the sensitivity of P-to-S conversions to fluid viscosity, and (3) how oriented voids within a fracture effect energy partitioning. These research findings advances our current understanding of role microscopic properties and structure on the generation, propagation and geometry of induced fractures in anisotropic rock, and help to identify the best imaging modalities to use to identify the seismic signatures of the viscosity of fluids in fractures with oriented voids. These contributions will help unravel the complex behavior often observed in natural rock that is structurally and compositionally complex with features and heterogeneity.  </p> <p><br></p>
4

Influence of the extreme grain size reduction on plastic deformation instability in an AlMg and AlMgScZr alloys / Influence de la réduction extrême de la taille des grains sur l’instabilité de la déformation plastique dans les alliages AlMg et AlMgScZr

Zhemchuzhnikova, Daria 11 December 2018 (has links)
L'élaboration de nouveaux alliages maintient un fort intérêt pour le phénomène d’instabilité plastique, ou l'effet Portevin-Le Chatelier (PLC), provoqué par l'interaction des dislocations avec des atomes de soluté. Par ailleurs, l'effet PLC attire l'intérêt comme un exemple remarquable d'auto-organisation dans les systèmes dynamiques. Il est associé à des motifs complexes de séries de chutes de contrainte liées à la nucléation et au mouvement des bandes de déformation dans le matériau déformé, et nécessite une compréhension de l'auto-organisation des dislocations. La déformation plastique des alliages Al-Mg est sujette à l'instabilité dans une large gamme de conditions expérimentales. Pour cette raison, les alliages Al-Mg binaires ont longtemps servi d'objets modèles pour l'étude de l'effet PLC. En même temps, l'utilisation pratique des alliages binaires Al-Mg est limitée en raison d’une faible résistance mécanique. Une amélioration significative de leurs propriétés peut être atteinte en ajoutant des solutés supplémentaires, conduisant en particulier à la formation de précipités. En outre, une forte réduction de la taille de grains du polycristal pourrait être une technique clé pour produire des matériaux à haute résistance et ténacité. Cependant, il existe très peu d'information, souvent contradictoire, sur l'instabilité PLC dans les alliages Al-Mg à grains fins et contenant des précipités. Le but de l'étude de cette thèse a été d'étudier les caractéristiques spécifiques de l'effet PLC dans les alliages à base AlMg, avec et sans nanoparticules, à gros grains et à grains fins, ces derniers obtenus par une méthode de déformation plastique sévère. Grâce à l’application de méthodes d’extensométrie locale, notamment de la technique de corrélation d’images, ces études ont révélé une persistance non habituelle de la propagation des bandes de déformation dans les alliages comprenant des précipités et/ou des grains fins. Ce mode dynamique est observé dans un large intervalle de vitesses de déformation, tandis qu’il n’apparait qu’à haute vitesse dans des alliages modèles AlMg. Par ailleurs, l’analyse des distributions statistiques des amplitudes des chutes de contrainte a révélé une tendance vers une statistique en loi puissance, caractéristique du mode de propagation. Ce phénomène est attribué à une modification du couplage spatial entre les dislocations, due à la concentration de contraintes internes. La combinaison de ces études avec l’analyse de l’émission acoustique a mis en évidence une influence de la microstructure sur la compétition entre un facteur aléatoire et la synchronisation des dislocations. Enfin, l’étude par corrélation d’images a permis d’observer une interrelation entre l’instabilité PLC et la formation de la striction. / The elaboration of new alloys sustains a strong interest to the phenomenon of unstable plastic flow, or the Portevin–Le Chatelier (PLC) effect, caused by interaction of dislocations with solute atoms. Moreover, this effect attracts interest as a rich example of self-organization in dynamical systems. It is associated with complex patterns of stress serrations related to nucleation and motion of deformation bands in the deforming material, and requires understanding of self-organization of dislocations. Plastic deformation of Al-Mg alloys is prone to instability in a wide range of experimental conditions. For this reason, binary Al-Mg alloys served for a long time as model objects for investigation of the PLC effect. At the same time, the practical use of binary Al-Mg alloys is limited because of their low strength. A significant improvement of their properties can be achieved by additional alloying, in particular, leading to precipitation. Further, extensive grain refinement could be a key technique used to produce tough and high- strength materials. However, there exists very limited and often contradictory information on the PLC instability in fine-grained Al-Mg alloys containing precipitates. The objective of the present thesis was to investigate specific features of the PLC effect in AlMg-based alloys with and without nanoscale particles, both in coarse-grained and fine-grained states, the latter obtained by severe plastic deformation. Using local extensometry methods, particularly the image correlation technique, these studies revealed an unusual persistence of the propagation of deformation bands in alloys with precipitates and/or fine grains. This dynamic mode is observed in a wide range of strain rates, whereas it only appears at high strain rate in model Al-Mg alloys. Moreover, the analysis of statistical distributions of stress drop amplitudes revealed a tendency to power law statistics characteristic of the propagation mode. This phenomenon was attributed to a modification of the spatial coupling between dislocations due to the concentration of internal stresses. The combination of these studies with the acoustic emission analysis uncovered an influence of the microstructure on the competition between a random factor and the dislocation synchronization. Finally, the study by the image correlation made it possible to observe an interrelation between the PLC instability and the neck formation.

Page generated in 0.0575 seconds