• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 110
  • 99
  • 20
  • 18
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 307
  • 90
  • 80
  • 69
  • 58
  • 46
  • 38
  • 31
  • 29
  • 27
  • 26
  • 24
  • 24
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Seismic Performance Assessment of Ductile Reinforced Concrete Block Structural Walls

Siyam, Mustafa 06 1900 (has links)
This dissertation is relevant to structural engineers focusing on seismic design of structures using reinforced masonry. Specifically the thesis focuses on the seismic performance of reinforced masonry shear walls as seismic force resisting systems. / Reinforced masonry (RM) has been gaining a wide acceptance in the low- and mid-rise construction market as an economic and durable structural system. However, challenges still exist in the area of seismic design because of the poor performance of unreinforced masonry during recent earthquake events in Iran 2003, Haiti 2010, Japan 2011, New Zealand 2011 and Nepal 2015. The dissertation investigated the seismic performance of six concrete block structural walls in an effort to evaluate their force-, displacement- and performance- based seismic design parameters. The walls fall under the ductile shear wall/special reinforced wall seismic force resisting system (SFRS) classification according to the current North American masonry design standards. More specifically, the dissertation is focused on evaluating if such walls, designed under the same prescriptive design provisions, having different cross-section configurations would possess similar seismic performance parameters. This was established through an experimental and analytical program by subjecting the walls to a displacement controlled quasi-static cyclic analysis. Different wall configurations were tested including, rectangular, flanged and slab-coupled walls. Test results confirmed that walls designed under the same SFRS classification, but with different configurations, have different seismic performance parameters that included ductility capacity; yield and post yield displacement; stiffness degradation; period elongation and equivalent viscous damping. The current North American masonry design provisions do not account for such difference in the ductility capacities between the walls. The thesis analyses were concluded by quantifying the seismic vulnerability of a RM SFRS comprised of shear walls similar to those tested, through the development of collapse fragility curves and the assignment of an adjusted collapse margin ratio, ACMR following the FEMA P-58 and P-695 guidelines. The system were deemed acceptable since the ACMR was greater than ACMR10% (2.35 > 2.31). Therefore, the selected RM SFRS which was designed to meet the prescriptive requirements of the ductile masonry walls classification of the CSA S304 (CSA 2014), shows potential capacity against collapse under high intensity earthquakes in one of the highest seismic zones in western Canada and it should be considered as a viable SFRS to be used in seismic design. The procedure described in the chapter can be adopted to investigate the collapse fragility of other SFRS in different seismic regions through careful selection and scaling of the ground motion records associated with such region's seismicity. / Dissertation / Doctor of Philosophy (PhD)
142

Seismic Fragility Assessment of As-built and Retrofitted Bridges using Fiber Reinforced Elastomeric Isolator

Alesahebfosoul, Seyyedsaber January 2022 (has links)
Highway bridges are considered to be one of the most susceptible constituents of transportation networks when they are subjected to severe natural hazards such as earthquakes and environmental exposures like subfreezing temperatures. To facilitate and enhance pre-hazard event mitigation and post-hazard emergency response strategies, probabilistic risk assessment methodologies have attracted increased attention, recently. Seismic fragility assessment is one of the probabilistic techniques which predicts the damage risk of the structure for a given hazard level. While fragility curves can be developed using different methods, such as expert-based, empirical, experimental, analytical, and hybrid, analytical fragility curves are perceived to be the most reliable and least biased technique. Seismic isolation systems are prevalently used in bridge structures to mitigate the damage risk of bridge components against natural hazards. However, the effectiveness of implementing recently emerged isolators such as Stable Unbonded Fiber Reinforced Elastomeric Isolators (SU-FREI) should be examined by developing analytical fragility curves of retrofitted bridges and quantifying the mitigation in the damage probability of different bridge components. In this regard, incorporating the Soil-Structure Interaction (SSI) is critical since the lateral response of bridges relies on the relative stiffness of bridge components, such as columns and isolators and the supporting soil. In addition, all bridge components are exposed to environmental stressors like subfreezing temperature that can alter the seismic response of bridges. In the first phase of this thesis, a seismic fragility assessment is carried out on an existing multi-span continuous reinforced concrete bridge. Two bridge representations are developed to simulate the as-built bridge along with its retrofitted counterpart utilizing SU-FREI. An Incremental Dynamic Analysis (IDA) is conducted using 45 synthetic ground motion records developed for eastern Canada and damage limit states are applied to generate fragility curves and determine the probability of damage to different bridge components. Bridges are analyzed in longitudinal and transverse directions, independently, and component- and system-level fragility curves are developed. In the second phase, the previously generated bridge models are expanded to incorporate the SSI effects by introducing the pile groups under piers and abutments. Several interactions including deck-abutment, abutment-embankment, pile-soil, and pile-soil-pile interactions are considered. A significant challenge in this phase is the accurate simulation of the lateral and vertical behavior of pile groups since all pile groups comprised of closely-spaced vertical and battered piles. A ground motion suite consisting of 45 ground motions has been selected, which reflects the seismicity of the bridge site. IDA is conducted to monitor the seismic performance of the bridge from the elastic linear region up to collapse. Fragility curves, which serve as an important decision-support tool have been developed to identify the potential seismic risk of the bridge. In the third phase, a multi-hazard assessment is carried out by conditioning the previously developed bridge models (i.e. monolithic fixed-base, isolated fixed-base, monolithic with SSI, and isolated with SSI) to a range of room and subfreezing temperatures and applying a seismic excitation, simultaneously. The cold temperature behavior of the constitutive materials of different bridge components, namely, concrete, reinforcing steel, rubber, and the supporting soil are studied and reflected in the bridge models. IDA is performed and damage potential of different bridge components are quantified. In summary, it is demonstrated that SU-FREI is a competing alternative for seismic isolation of bridges by offering potentially less manufacturing time and cost, lower weight, and easier installation which is an attractive feature for accelerated bridge construction applications. In all three phases, it is shown that the bridges which are isolated using SU-FREI have improved seismic performance in comparison with monolithic bridges by exhibiting lower probability of damage to the primary bridge components like columns and pile caps and transferring the damage to less important components such as abutments at which damage does not cause bridge closure. In addition, it is shown that seismic isolation using SU-FREI can effectively mitigate the seismic demand and damage potential of the constitutive components of a bridge supported by weak soil. While occurrence of seismic events along with an environmental stressor such as cold temperature can drastically jeopardize the functionality of a bridge supported by weak soil, it is demonstrated that seismic isolation using SU-FREI can significantly alleviate the probability of damage to bridge components. / Dissertation / Doctor of Philosophy (PhD)
143

Erasures and Inventions: Re-Forming our Memories

Polansky, Tara R. 12 September 2011 (has links)
No description available.
144

FRAGILITY CURVES FOR RESIDENTIAL BUILDINGS IN DEVELOPING COUNTRIES: A CASE STUDY ON NON-ENGINEERED UNREINFORCED MASONRY HOMES IN BANTUL, INDONESIA

Khalfan, Miqdad 04 1900 (has links)
<p>Developing countries typically suffer far greater than developed countries as a result of earthquakes. Poor socioeconomic conditions often lead to poorly constructed homes that are vulnerable to damage during earthquakes. Literature review in this study highlights the lack of existing fragility curves for buildings in developing countries. Furthermore, fragility curves derived using empirical data are almost nonexistent due to the scarcity of post-earthquake damage data and insufficient ground motion recordings in developing countries. Therefore, this research proposes a methodology for developing empirical fragility curves using ground motion data in the form of USGS ShakeMaps.</p> <p>The methodology has been applied to a case study consisting of damage data collected in Bantul Regency, Indonesia in the aftermath of the May 2006 Yogyakarta earthquake in Indonesia. Fragility curves for non-engineered single-storey unreinforced masonry (URM) homes have been derived using the damage dataset for three ground motion parameters; peak ground acceleration (PGA), peak ground velocity (PGV), and pseudo-spectral acceleration (PSA). The fragility curves indicate the high seismic vulnerability of non-engineered URM homes in developing countries. There is a probability of 80% that a seismic event with a PGA of only 0.1g will induce significant cracking of the walls and reduction in the load carrying capacity of a URM home, resulting in moderate damage or collapse. Fragility curves as a function of PGA and PSA were found to reasonably represent the damage data; however, fits for several PGV fragility curves could not be obtained. The case study illustrated the extension of ShakeMaps to fragility curves, and the derived fragility curves supplement to the limited collection of empirical fragility curves for developing countries. Finally, a comparison with an existing fragility study highlights the significant influence of the derivation method used on the fragility curves. The diversity in construction techniques and material quality in developing countries, particularly for non-engineered cannot be sufficiently represented through simplified or idealized analytical models. Therefore, the empirical method is considered to be the most suitable method for deriving fragility curves for structures in developing countries.</p> / Master of Applied Science (MASc)
145

Physical Aging of Miscible Polymer Blends

Robertson, Christopher G. 07 January 2000 (has links)
Physical aging measurements were performed on various polymeric glasses with the overriding goal of developing a better molecular picture of the nonequilibrium glassy state. To this end, aging-induced changes in mechanical properties and in the thermodynamic state (volume and enthalpy) were assessed for two different miscible polymer blends as a function of both composition and aging temperature. This investigation considered the physical aging behavior of blends containing atactic polystyrene (a-PS) and poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) as well as mixtures of poly(methyl methacrylate) (PMMA) and poly(styrene-co-acrylonitrile) (SAN). Substantial attractive chemical interactions are characteristic of a-PS/PPO blends but are absent in PMMA/SAN blends. The distinct nature of interactions for these two blends resulted in differences in the compositional dependence of secondary relaxation intensity, segmental cooperativity which dictates glass formation kinetics, and density (prior to aging). The variation of volume relaxation rate with aging temperature and composition was interpreted based upon these characteristics for the two systems. In addition, a general relationship was uncovered which linked structural relaxation rates for amorphous polymers to their respective segmental relaxation characteristics (glass transition cooperativity or fragility), which in turn are well understood from a molecular standpoint. This work, therefore, established a basis for comprehending glassy state volume and enthalpy relaxation rates based upon molecular characteristics. Developing an understanding of the connection between the evolving thermodynamic state and mechanical property changes fared less well. The fact that the thermodynamic and mechanical properties can have very different relaxation time responses governing their changes in the nonequilibrium glassy state was clearly evident in an extensive study of the physical aging characteristics of an amorphous polyimide material. For some materials, interpretation of mechanical aging behavior was obscured by thermorheological complexity arising due to overlap of a secondary relaxation with the main chain softening dispersion. / Ph. D.
146

Development of Fragility Curve Database for Multi-Hazard Performance Based Design

Tahir, Haseeb 14 July 2016 (has links)
There is a need to develop efficient multi-hazard performance based design (PBD) tools to analyze and optimize buildings at a preliminary stage of design. The first step was to develop a database and it is supported by five major contributions: 1) development of nomenclature of variables in PBD; 2) creation of mathematical model to fit data; 3) collection of data; 4) identification of gaps and methods for filling data in PBD; 5) screening of soil, foundation, structure, and envelope (SFSE) combinations.. A unified nomenclature was developed with the collaboration of a multi-disciplinary team to navigate through the PBD. A mathematical model for incremental dynamic analysis was developed to fit the existing data in the database in a manageable way. Three sets of data were collected to initialize the database: 1) responses of structures subjected to hazard; 2) fragility curves; 3) consequence functions. Fragility curves were critically analyzed to determine the source and the process of development of the curves, but structural analysis results and consequence functions were not critically analyzed due to lack of similarities between the data and background information respectively. Gaps in the data and the methods to fill them were identified to lay out the path for the completion of the database. A list of SFSE systems applicable to typical midrise office buildings was developed. Since the database did not have enough data to conduct PBD calculations, engineering judgement was used to screen SFSE combinations to identify the potential combinations for detailed analysis. Through these five contributions this thesis lays the foundation for the development of a database for multi- hazard PBD and identifies potential future work in this area. / Master of Science
147

Computational Modeling of Glass Curtain Wall Systems to Support Fragility Curve Development

Gil, Edward Matthew 25 September 2019 (has links)
With the increased push towards performance-based engineering (PBE) design, there is a need to understand and design more resilient building envelopes when subjected to natural hazards. Since architectural glass curtain walls (CW) have become a popular façade type, it is important to understand how these CW systems behave under extreme loading, including the relationship between damage states and loading conditions. This study subjects 3D computational models of glass CW systems to in- and out-of-plane loading simulations, which can represent the effects of earthquake or hurricane events. The analytical results obtained were used to support fragility curve development which could aid in multi-hazard PBE design of CWs. A 3D finite element (FE) model of a single panel CW unit was generated including explicit modeling of the CW components and component interactions such as aluminum-to-rubber constraints, rubber-to-glass and glass-to-frame contact interactions, and semi-rigid transom-mullion connections. In lieu of modeling the screws, an equivalent clamping load was applied with magnitude based on small-scale experimental test results corresponding to the required screw torque. This FE modeling approach was validated against both an in-plane racking displacement test and out-of-plane wind pressure test from the literature to show the model could capture in-plane and out-of-plane behavior effectively. Different configurations of a one story, multi-panel CW model were generated and subjected to in- and out-of-plane simulations to understand CW behavior at a scale that is hard to test experimentally. The structural damage states the FE model could analyze included: 1) initial glass-to-frame contact; 2) glass/frame breach; 3) initial glass cracking; 4) steel anchor yielding; and 5) aluminum mullion yielding. These were linked to other non-structural damage states related to the CW's moisture, air, and thermal performance. Analytical results were converted into demand parameters corresponding to damage states using an established derivation method within the FEMA P-58 seismic fragility guidelines. Fragility curves were then generated and compared to the single panel fragility curves derived experimentally within the FEMA P-58 study. The fragility curves within the seismic guidelines were determined to be more conservative since they are based on single panel CWs. These fragility curves do not consider: the effects of multiple glass panels with varying aspect ratios; the possible component interactions/responses that may affect the extent of damages; and the continuity of the CW framing members across multiple panels. Finally, a fragility dispersion study was completed to observe the effects of implementing the Derivation method or the Actual Demand Data method prescribed by FEMA P-58, which differ on how they account for different levels of uncertainty and dispersion in the fragility curves based on analytical results. It was concluded that an alternative fragility parameter derivation method should be implemented for fragility curves based on analytical models, since this may affect how conservative the analytically based fragility curves become at a certain probability of failure level. / Master of Science / Performance-based engineering (PBE) can allow engineers and building owners to design a building envelope for specific performance objectives and strength/serviceability levels, in addition to the minimum design loads expected. These envelope systems benefit from PBE as it improves their resiliency and performance during natural multi-hazard events (i.e. earthquakes and hurricanes). A useful PBE tool engineers may utilize to estimate the damages an envelope system may sustain during an event is the fragility curve. Fragility curves allow engineers to estimate the probability of reaching a damage state (i.e. glass cracking, or glass fallout) given a specified magnitude of an engineering demand parameter (i.e. an interstory drift ratio during an earthquake). These fragility curves are typically derived from the results of extensive experimental testing of the envelope system. However, computational simulations can also be utilized as they are a viable option in current fragility curve development frameworks. As it’s popularity amongst owners and architects was evident, the architectural glass curtain wall (CW) was the specific building envelope system studied herein. Glass CWs would benefit from implementing PBE as they are very susceptible to damages during earthquakes and hurricanes. Therefore, the goal of this computational research study was to develop fragility curves based on the analytical results obtained from the computational simulation of glass CW systems, which could aid in multi-hazard PBE design of CWs. As v opposed to utilizing limited, small experimental data sets, these simulations can help to improve the accuracy and decrease the uncertainties in the data required for fragility curve development. To complete the numerical simulations, 3D finite element (FE) models of a glass CW system were generated and validated against experimental tests. 11 multi-panel CW system configurations were then modeled to analyze their effect on the glass CW’s performance during in-plane and out-of-plane loading simulations. These parametric configurations included changes to the: equivalent clamping load, glass thickness, and glass-to-frame clearance. Fragility curves were then generated and compared to the single panel CW fragility curves derived experimentally within the FEMA P-58 Seismic Fragility Curve Development study. The fragility curves within FEMA P-58 were determined to be more conservative since they are based on single panel CWs. These fragility curves do not consider: the effects of multiple glass panels with varying aspect ratios; the possible component interactions/responses that may affect the extent of damages; and the continuity of the CW framing members across multiple panels. Finally, a fragility dispersion study was completed to observe the effects of implementing different levels of uncertainty and dispersion in the fragility curves based on analytical results.
148

Niña de Cristal | Girl of Glass

Cal Mello, Camila 01 January 2024 (has links) (PDF)
Niña de Cristal | Girl of Glass is a collection of essays focusing on how emotional sensitivity and identity converge through several lenses, but primarily through a mother-daughter relationship. In the title essay, "Niña de Cristal," the narrator's mother accuses her of being too fragile, a girl made of glass, and the narrator must contend with the instances in her life that caused the fragility. The first section explores generational trauma through lyrical essays about the narrator's separation from her family after her immigration to the U.S. from Uruguay. In "Daughter Language," the glossary form showcases her family's difficult history and the ways that language kept them connected despite the distance. The second section investigates the narrator's feelings on body image and desire. In "Body's Very Good Day," the narrator perceives herself as just a body and unpacks the detriments of how her upbringing emphasized self-image. Through the "I have a dead dog…" flash essays, the third section invites readers to see how the narrator experiences the pain of absence and grief after the death of her childhood dog. The fourth section details the narrator's struggle as a caretaker during her mother's battle with cancer. "the doctor says i must milk her body" leans into fantastical elements that highlight the chaos and absurdity of being powerless over a serious illness. The collection ends with "In Memory of The Perfect Body," which shows the lingering effects of knowing that her mother, the person she loves most, is also fragile. Niña de Cristal | Girl of Glass is a collection that acts as a mirror, demonstrating how the narrator and her mother's emotional sensitivities reflect each other.
149

Disuse osteopenia : the short- and long-term effects of post-traumatic and post-surgical immobilisation following lower limb injury or total knee replacement

Hopkins, Susan Jane January 2013 (has links)
Low trauma hip fractures, due to bone fragility, are a major healthcare burden with serious consequences for individuals in terms of long-term morbidity and mortality; and also for society due to the high medical and care costs associated with these injuries. Because of the association with low bone mass, these fractures are particularly prevalent in elderly populations and are likely to become more common as longevity increases globally. Avoidance of these fractures is therefore an extremely important goal. Low bone mass, manifested in the conditions of osteopenia and osteoporosis, is the primary cause of bone fragility, and reductions in bone mass are the inevitable corollary of aging and menopause. Bone loss may be exacerbated by immobilisation and reduced weight-bearing activity, giving rise to the condition of disuse osteopenia. Immobilisation may itself be the result of low trauma leg fragility fractures that potentially causes further bone density loss. If this loss occurs at the hip, there is an increased risk for hip fracture as a sequela to the original injury. Osteoarthritis is also a condition strongly associated with aging that may necessitate knee arthroplasty as a last stage treatment, potentially causing a period of reduced mobility and weight-bearing activity following surgery. Leg fracture and knee replacement both present additional risk factors for hip fracture due to changes in muscle mass, gait and postural stability that may increase the risk of falls. This study aims primarily to investigate the effects of immobilisation on leg fracture and knee replacement patients, immediately following injury or surgery, in order to quantify bone and muscle loss and to monitor recovery over a one year period. A postmenopausal population were studied as they are already losing bone density systemically and may be at greater risk of further bone loss following immobilisation. Factors of activity, function, weight-bearing, pain, treatments, therapies, health perceptions and mental wellbeing, that potentially contribute to bone loss and recovery, were also investigated. Results from the study may provide information relating to increased future hip fracture risk and lead to treatment options to alleviate bone loss in these groups.
150

Hranice: Případ Saúdské Arábie / Border Walls: The Case of Saudi Arabia

Hamzić, Mensur January 2016 (has links)
This thesis will work on implementing the Political Economic Theory of Wall Construction on the case of Saudi Arabia. To further contribute to the study of border walls, the PETWC is applied to a different methodology than in the original paper where it was first introduced, taking into consideration neighboring countries without border walls into analysis. Ultimately, the thesis will show that PETWC sets good foundation for further development of a broader border wall theory, and that border walls concerning Saudi Arabia are consequence of low regional integration and internal instability at home and abroad.

Page generated in 0.0537 seconds