• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

NEW TELEMETRY HARDWARE FOR THE DEEP SPACE NETWORK TELEMETRY PROCESSOR SYSTEM

Puri, Amit, Ozkan, Siragan, Schaefer, Peter, Anderson, Bob, Williams, Mike 10 1900 (has links)
International Telemetering Conference Proceedings / October 23-26, 2000 / Town & Country Hotel and Conference Center, San Diego, California / This paper describes the new Telemetry Processor Hardware (TPH) that Avtec Systems has developed for the Deep Space Network (DSN) Telemetry Processor (TLP) system. Avtec is providing the Telemetry Processor Hardware to RTLogic! for integration into the Telemetry Processor system. The Deep Space Network (DSN) is an international network of antennas that supports interplanetary spacecraft missions for exploration of the solar system and the universe. The Jet Propulsion Laboratory manages the DSN for NASA. The TLP system provides the capability to acquire, process, decode and distribute deep space probe and Earth orbiter telemetry data. The new TLP systems will be deployed at each of the three deep-space communications facilities placed approximately 120 degrees apart around the world: at Goldstone, California; near Madrid, Spain; and near Canberra, Australia. The Telemetry Processor Hardware (TPH) supports both CCSDS and TDM telemetry data formats. The TPH performs the following processing steps: soft-symbol input selection and measurement; convolutional decoding; routing to external decoders; time tagging; frame synchronization; derandomization; and Reed-Solomon decoding. The TPH consists of a VME Viterbi Decoder/MCD III Interface board (VM-7001) and a PCI-mezzanine Frame Synchronizer/Reed-Solomon Decoder (PMC- 6130-J) board. The new Telemetry Processor Hardware is implemented using the latest Field Programmable Gate Array (FPGA) technology to provide the density and speed to meet the current requirements as well as the flexibility to accommodate processing enhancements in the future.
2

HARDWARE DOWNLOADABLE MULTI-FUNCTION TELEMETRY INPUT MODULE

Nicolais, Ray, Nicolo, Stephen J., Snyder, Ed 10 1900 (has links)
International Telemetering Conference Proceedings / October 23-26, 2000 / Town & Country Hotel and Conference Center, San Diego, California / This paper describes a Multi-Function Telemetry Input Module (TIM). The TIM module includes a 30 Mbps PCM frame synchronizer, a time code translator/generator, a PCM simulator and a tunable bit synchronizer all on a single PCI card. The module uses a generic architecture including: high density Field Programmable Gate Arrays (FPGAs), look-up table memory, dual port A/B data buffer memory and a full function PCI interface. The FPGA and the logic function of the card are downloadable via the PCI interface. This allows a single module to support many hardware functions in a telemetry front-end. The TIM is an integral part of a PC-based Advanced Telemetry Processing and Display System. This concept for hardware design ushers in a new generation of flexible downloadable telemetry products.

Page generated in 0.055 seconds