• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 9
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 66
  • 66
  • 18
  • 13
  • 11
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Developing a system of mutagenesis in Francisella tularensis LVS /

Flax, Lindsay A. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2007. / Printout. Includes bibliographical references (leaves 59-63). Also available on the World Wide Web.
22

Určení mechanismu vstupu F. tularensis do B lymfocytů / Determination the mechanism of entry F. tularensis into B lymphocytes

Hadámková, Barbora January 2018 (has links)
Barbora Hadámková Determination the mechanism of entry F. tularensis into B lymphocytes Diploma thesis Charles University, Faculty Of Pharmacy in Hradec Králové Study program: Pharmacy Background: Besides processing the research with basics knowledge of the problem, the main aim of the study was the analysis of mechanism of entrance of intracellular bacteria Francisella tularensis into B cells. Methods: The B cells, which we obtained through peritoneal lavage from mice Balb/c, we blocked using antibodies individual complement receptors, B cell receptor and Fcƴ receptor. The population of the cells was infected by bacteria F. tularensis LVS/GFP opsonized by complement and/or by antibodies. Using flow cytometry we measured the percentage of infection of individual subpopulations of B cell B1a, B1b and B2 and we evaluated the influence of blocking and opsonization on the infection. Results: From the measured data, we can say that the percentage of infected B cells after infection by F. tularensis opsonized by complement is increased. This increase was more distinct in subtype of B cells B1b and B2. On the other hand, the opsonization F. tularensis by antibodies did not affect the infection. We also found out, that blocking of Fcƴ receptor has decrease the infection, if we used for infection of B cells...
23

Surface Polysaccharides of Francisella tularensis: Further Characterization, Role in Virulence, and Application to Novel Vaccine Strategies

Freudenberger Catanzaro, Kelly C. 10 April 2019 (has links)
Francisella tularensis is a Gram-negative, zoonotic bacterium that causes tularemia in animals and humans. The two subspecies tularensis (Type A) and holarctica (Type B) are considered Tier I Select Agents due to the bioweapon potential of these subspecies. Type A strains, considered the more virulent of the subspecies, are highly infective producing respiratory tularemia with inhalation of as few as 10 cells. Due to classification as a Select Agent, a vast amount of F. tularensis research has occurred in the last two decades after the September 11th terrorism attack and the use of Bacillus anthracis spores in a biological attack on the United States Postal Services in 2001. This research has uncovered many of the various virulence factors of F. tularensis including an intracellular nature, the unique lipopolysaccharide produced, and a genetic pathogenicity island. This dissertation aims to further characterize outer surface antigens of F. tularensis subspecies in regards to virulence, biofilm formation, and role in vaccine development. In addition, this dissertation will also investigate the use of a novel vaccine delivery vehicle, alginate microencapsulation, in increasing the efficacy of these mutant strains. F. novicida is a subspecies of F. tularensis and usually classified as being non-encapsulated. However, F. novicida has a similar capsule glycosylation locus as F. tularensis and could produce a similar capsule-like complex that has previously been described for the F. tularensis LVS strain. I was able to isolate and characterize this CLC of F. novicida, which contained a heterogenous mixture of proteins and possible glycosylated proteins. A mutant with a multi-gene interruption within the glycosylation locus (F. novicidaΔ1212-1218) produced significantly less carbohydrate than the parent strain, was attenuated in the mouse model, and was partially protective when used to immunize mice against a virulent challenge. Biofilms of F. novicida were also characterized in regards to biofilm formation in various growth media and biofilm formation of strains lacking the O-antigen of the lipopolysaccharide (LPS). In general, F. novicida produced the greatest amount of biofilm in a brain heart infusion (BHI) broth, compared to other media. Loss of the O-antigen led to increased biofilm production when grown in BHI and decreased or similar biofilm production as the wildtype when grown in other media. This highlights the need to carefully select the growth medium when assessing biofilm formation of Francisella strains in the future. A final study of this dissertation characterized the use of alginate microspheres as a vaccine vehicle for an attenuated F. tularensis type A O-antigen deficient strain. O-antigen deficient strains of F. tularensis are highly attenuated in vivo and would be a safe choice for a vaccine candidate. However, these strains produce less than ideal protection against virulent challenge when used to immunize mice, possibly due to a lack of persistence in the host. In an attempt to increase persistence, we encapsulated an O-antigen deficient strain within sodium alginate microspheres and used those microspheres to immunize mice. The immunized mice produced a higher level of antibody response than mice immunized with a non-encapsulated version. However, this immunization only partially protected mice from a virulent challenge and did not match the protection afforded by the former Live Vaccine Strain (LVS). In part the deficiency in protection appears to be due to a lack of a robust cellular immune response in mice immunized with the alginate microspheres. In summary, this dissertation focuses on the various extracellular polysaccharides of F. tularensis: the glycosylation of CLC, the O-antigen, and the biofilm. Each polysaccharide plays a role in the virulence and pathogenesis of F. tularensis. Glycosylation of the CLC and the O-antigen are important virulence factors in mammalian disease, and mutants lacking either (not type A strains) are attenuated in the mouse model. Both also appear to play a role in the formation of the F. tularensis biofilm in a manner dependent on the environment or culture medium used. Each of these extracellular polysaccharides contribute to the lifecycle of Francisella. / Ph.D. / Francisella tularensis is a highly infectious bacterial pathogen that can cause disease in a wide array of animals and in humans. F. tularensis is also considered a potential weapon of bioterrorism and the development of an effective vaccine is a critical area of research. One strategy of developing a tularemia vaccine includes mutating a strain of F. tularensis to reduce expression of extracellular components that include polysaccharides. Strains that cannot express these components are usually unable to produce clinical signs in the host and may provide protection against fully virulent F. tularensis strains. The work presented in this dissertation will focus on characterizing the polysaccharide extracellular components of F. tularensis and developing a novel vaccine vehicle to increase protection from strains that do not cause disease.
24

Identification of Francisella tularensis Outer Membrane Proteins

Melillo, Amanda Adeline 20 July 2005 (has links)
No description available.
25

Regulation of Virulence Gene Transcripts by the Francisella Orphan Response Regulator PmrA: Role of Phosphorylation and Evidence of MglA/ SspA Interaction

Bell, Brian L. 26 August 2009 (has links)
No description available.
26

Francisella tularensis blue-grey phase variation involves structural modifications of lipopolysaccharide O-antigen, core and lipid A and affects intramacrophage survival and vaccine efficacy

Soni, Shilpa 17 December 2010 (has links)
No description available.
27

Étude de la régulation de l'inflammasome AIM2 dans des macrophages infectés par Francisella tularensis / Study of the regulation of AIM2 inflammasome in macrophages infected with Francisella Tularensis

Juruj, Carole 21 May 2013 (has links)
L'inflammasome est une voie de signalisation du système immunitaire inné impliquée dans la lutte contre les pathogènes et notamment dans la réponse aux infections bactérienne. L'activation de l'inflammasome entraine la sécrétion de cytokines pro-inflammatoires et une mort cellulaire caspase-1 dépendante. Des dérégulations de l'inflammasome conduisent aussi à des syndromes auto-inflammatoires graves ; il est donc essentiel de mieux comprendre sa régulation. Francisella tularensis est une bactérie intracellulaire facultative responsable de la tularémie. Son pouvoir pathogène est lié à sa capacité à s'échapper rapidement de son phagosome. Le système de surveillance du macrophage détecte la présence de F. tularensis via l'inflammasome AIM2. La détection de l'ADN bactérien induit la formation d'un large complexe composé de AIM2, le récepteur, d'ASC, l'adaptateur et de caspase-1, l'effecteur ; ce complexe forme un speck visible dans la cellule. Nous avons utilisé l'infection par F. tularensis de macrophages primaires murins pour étudier la régulation de l'inflammasome AIM2 dans un contexte physiologique. Nous avons ainsi identifié une boucle de rétrocontrôle, médiée par la caspase-1, qui régule négativement la formation/stabilité des specks AIM2. Nous avons étudié le rôle de facteurs vacuolaires et des espèces réactives de l'oxygène et de l'azote dans l'activation de l'inflammasome AIM2 lors de l'infection par Francisella. Nous avons ainsi mis en évidence le rôle clef des péroxynitrites dans cette activation. Nos résultats suggèrent que des décomposeurs catalytiques des péroxynitrites pourraient avoir un rôle thérapeutique dans les maladies liées à l'inflammasome / The inflammasome is an innate immune signaling pathway involved in the fight against pathogens. This pathway can also be activated by danger signals. Inflammasome activation induces the release of the pro-inflammatory cytokines IL-1b and IL-18 and cell death in a caspase-1 dependent manner. The inflammasome pathway is a key antibacterial pathway. Deregulation of the inflammasome pathway can lead to serious auto-inflammatory syndromes ; it is therefore critical to better understand inflammasome regulation. Francisella tularensis is a facultative intracellular bacterium responsible for tularemia. Its ability to cause disease is linked to its ability to rapidly escape from the phagosome into the host cytosol where it replicates. The macrophage surveillance system can detect F. tularensis presence in the cytosol through the AIM2 inflammasome. Recognition of DNA induces the formation of a large complex consisting of AIM2, the receptor; ASC, the adaptor and caspase-1, the effector; this complex is visible as a speck within the cell. We used F. tularensis infection of bone marrow derived macrophages to study the activation of the AIM2 inflammasome in a physiological context. We have identified a feedback loop, dependent on caspase-1, negatively regulating speck formation/stability. Then, we studied the role of vacuolar factors and reactive oxygen and nitrogen species in the AIM2 inflammasome activation during Francisella infection. We also described a key role for peroxynitrite in this activation. Our results suggest that catalytic decomposer of peroxynitrite may have a therapeutic potential in diseases linked to inflammasome
28

Nouvelles approches combinant protéomique, immuno-enrichissement et bioinformatique pour la détection de microorganismes / New approaches for microorganisms detection combining proteomics, immuno-enrichment and bioinformatics

Durighello, Emie 16 December 2014 (has links)
Identifier rapidement des microorganismes pathogènes dans des échantillons environnementaux est un enjeu majeur dans le domaine de la biodéfense. Dans ce contexte, la spectrométrie de masse MALDI-TOF peut offrir une réponse simple, rapide et peu coûteuse. L'enjeu de la thèse, dans le cadre du projet ANR franco-allemand GEFREASE, a été de développer des méthodes permettant l'identification des microorganismes pathogènes et notamment de mettre en place des approches ciblées pour la préparation d'échantillon à l'aide d'anticorps en amont de la spectrométrie de masse. Dans un premier temps, l'étude du protéome de la bactérie modèle, Francisella tularensis subsp. holarctica LVS, responsable de la tularémie, a permis d'identifier les protéines et les peptides les plus abondants donnant un signal intense par spectrométrie de masse. Ensuite l'étude protéogénomique de douze protéines cibles a permis de choisir trois biomarqueurs dont le profil des masses par spectrométrie de masse de type MALDI-TOF (approche top-down) est spécifique de l'espèce et de la sous-espèce des bactéries du genre Francisella. Par cette méthode la virulence d'une souche est donc rapidement déterminée puisqu'elle est dépendante de la sous-espèce à laquelle la bactérie appartient. Ce test mis au point présente l'avantage d'être simple et rapide. Dans un deuxième temps, la mise au point d'un protocole d'enrichissement de la bactérie modèle par immunocapture magnétique a permis de montrer qu'il est possible de concentrer des bactéries grâce à des billes magnétiques couplées à des anticorps dirigés contre la bactérie entière. Cette approche a été expérimentée dans le cas de mélanges de bactéries où la bactérie modèle était largement minoritaire et dans des échantillons de matrices alimentaires diverses telles que de l'eau minérale ou du lait. La méthodologie a été validée sur un agent de classe 3, Francisella tularensis subsp. tularensis. / The rapid identification of pathogenic microorganisms in environmental samples is a major issue in the biodefense field. MALDI-TOF mass spectrometry can offer a fast, straightforward and inexpensive answer. In the framework of the Franco-German ANR project GEFREASE, the purpose of the thesis was to develop methodologies allowing identification of pathogenic microorganisms and particularly to set up targeted approaches using antibodies for sample preparation beforehand mass spectrometry. First of all, the proteome study of Francisella tularensis subsp. holarctica LVS, responsible for tularemia, allowed us to identify the most abundant proteins and peptides, and for which the most intense signals are observed when using mass spectrometry. The proteogenomic study of twelve of these proteins enable us to choose three biomarkers for which the masses monitored by MALDI-TOF mass spectrometry (top down approach) allow deciphering the Francisella species and subspecies. The interest of this work is being able to conclude on a strain virulence based on the knowledge of the subspecies it belongs. The finalized test is easy and fast. Secondly, the development of a magnetic immunocapture of Francisella tularensis subsp. holarctica LVS allowed us to show that it is possible to concentrate bacteria using magnetic beads coupled to antibodies raised against the entire bacterium. This approach has been experimented in the case of bacterial mixtures where the model bacterium was largely in minority and for samples containing various food matrices such as mineral water or milk. The methodology has been validated on a class 3 agent, Francisella tularensis subsp. tularensis.
29

Étude de IglG, une protéine à domaine PAAR-like du système de sécrétion de type VI de Francisella tularensis / Study of the IglG, a PAAR-like protein of Francisella tularensis

Rigard, Mélanie 13 April 2016 (has links)
Francisella tularensis est une bactérie responsable de la tularémie. Sa virulence est liée à sa capacité à se multiplier dans le cytoplasme des macrophages. F. novicida, proche de F. tularensis, est utilisée comme modèle d’étude. L'îlot de pathogénicité de Francisella (FPI), un locus crucial pour la virulence de Francisella coderait pour un système de sécrétion de type VI (SST6). Ce SST6 est très distinct des autres SST6 décrits et son fonctionnement est très mal connu. En particulier, la protéine VgrG de Francisella est très différente des protéines VgrG des types VI canoniques. Les protéines VgrG canoniques interagissent avec des protéines à motifs PAAR. Celles-ci sont situées à la pointe des SST6 et fixent un atome de zinc grâce à une cystéine et 3 histidines pour stabiliser la protéine lors de la traversée de la membrane de la cellule cible. Les effecteurs du SST6 peuvent être sécrétés via une interaction avec des extensions N-terminale ou C-terminale de VgrG ou des protéines PAAR (rôle cargo de ces extensions). Par une approche bioinformatique, nous avons identifié une protéine (FTN_1314 : IglG) impliquée dans la virulence de F. novicida. Mon projet de thèse porte sur la caractérisation moléculaire de cette protéine dans la virulence de F. novicida. IglG contient, en C-terminal, un domaine de fonction inconnue (DUF 4280) retrouvé chez plus de 250 espèces bactériennes. L’analyse tridimentionnelle de ce domaine suggère que cette protéine adopte un repliement proche de celui des protéines à motif PAAR et contient 4 cystéines. Nous avons montré que la mutation ponctuelle d’une cystéine d’IglG abolit la virulence de F. novicida, et ceci pour les 4 cystéines indépendamment. De plus, elles sont capables de lier un atome de fer et sont nécessaires pour la sécrétion d’IglG et d’IglC (homologue de Hcp). IglG possède en plus de ce domaine PAAR-like, une extension N-terminale qui pourrait interagir avec des effecteurs de la bactérie (rôle de domaine cargo) ou agir directement en tant qu'effecteur dans la cellule hôte. Nous avons distingué 4 régions dans le domaine N-terminal et nous avons montré que la délétion de la plus petite région abolit la virulence de F. novicida. Ce domaine N-terminal est spécifique de IglG, il n’est pas retrouvé dans d’autres protéines à domaine PAAR. Il n’est pas requis pour la sécrétion de IglG, mais il est requis pour l’interaction avec IglF, une autre protéine du FPI, qui pourrait jouer un rôle d’effecteur du SST6. Ce projet permet une meilleure compréhension du SST6 de F. novicida et des mécanismes de réplication de cette bactérie dans la cellule hôte / The virulence of Francisella tularensis, the etiological agent of tularemia, relies on an atypical type VI secretion system (T6SS) encoded by a genomic island termed the Francisella Pathogenicity Island (FPI). While the importance of the FPI in F. tularensis virulence is clearly established, the precise role of most of the FPI-encoded proteins remains to be deciphered. In this study, using highly virulent F. tularensis strains and the closely related species F. novicida, IglG was characterized as a protein featuring a unique a-helical N-terminal extension and a domain of unknown function (DUF4280), present in more than 250 bacterial species. Three dimensional modeling of IglG and of the DUF4280 consensus protein sequence suggest that these proteins adopt a PAAR-like fold, indicating they could cap the T6SS in a similar way as the recently described PAAR proteins. The newly identified PAARlike motif is characterized by four conserved cysteine residues, also present in IglG, which may bind a metal atom. We demonstrate that IglG binds iron and that each individual cysteine is required for T6SS-dependent secretion of IglG and of the Hcp homologue, IglC and for the F. novicida intracellular life cycle. In contrast, the Francisella-specific N-terminal a-helical extension is not required for IglG secretion, but is critical for F. novicida virulence and for the interaction of IglG with another FPIencoded protein, IglF. Altogether, our data suggest that IglG is a PAAR-like protein acting as a bimodal protein that connects the tip of the Francisella T6SS with a putative T6SS effector, IglF
30

Recherche de nouvelles stratégies thérapeutiques pour le traitement de la tularémie : résistances bactériennes chez Francisella tularensis et développement de nouveaux antibiotiques bis-indoliques de synthèse / Search for new therapeutic strategies for the treatment of tularemia : antibiotic resistances of Francisella tularensis and development of new synthetic bis-indolic antibiotics.

Caspar, Yvan 22 May 2017 (has links)
La tularémie est une zoonose liée à la bactérie Francisella tularensis, hautement pathogène pour l’homme. La sous espèce la plus virulente, F. tularensis subsp. tularensis, est retrouvée uniquement en Amérique du Nord, alors que la sous-espèce F. tularensis subsp. holarctica est présente dans tout l’hémisphère Nord. En France toutes les souches appartiennent au biovar I de la sous-espèce holarctica et plus précisément au groupe phylogénétique B.FTNF002-00. Bien que rarement grave en France, la tularémie pose le problème de taux d’échecs thérapeutiques élevés, jusqu’à 25% en cas de traitement par ciprofloxacine ou gentamicine, et 35% pour la doxycycline. Les causes de ces échecs ne sont pas bien élucidées à l’heure actuelle. L’analyse de la littérature ainsi que la détermination de la sensibilité de 59 souches françaises de F. tularensis subsp. holarctica à 18 antibiotiques, confirment qu’aucune souche isolée à ce jour ne présente de résistance acquise à ces trois familles d’antibiotiques, qui représentent le traitement de première ligne de la tularémie. Les fluoroquinolones (en particulier la ciprofloxacine et la lévofloxacine) présentent concentrations minimales inhibitrices les plus basses, devant la gentamicine et la doxycycline. Les données disponibles in vitro et en modèle animal étant corrélées aux données humaines en termes d’efficacité et de taux d’échecs thérapeutiques, il semble néanmoins préférable de positionner la ciprofloxacine en première ligne pour le traitement des formes modérées de tularémie et de limiter l’utilisation de la doxycycline aux cas de contre-indication aux fluoroquinolones. L’azithromycine et la télithromycine ont été identifiées comme des alternatives thérapeutiques envisageables en cas d’infection par une souche de biovar I de F. tularensis subsp. holarctica lorsqu’existe une contre-indication aux traitements de première ligne. Des études en modèles animaux restent néanmoins nécessaires pour conforter ces dernières observations. La sélection in vitro de souches résistantes aux fluoroquinolones est possible, ce qui suggère la possibilité d’émergence de mutants résistants in vivo pour expliquer les taux d’échec thérapeutiques. Les principales mutations de résistance aux fluoroquinolones chez F. tularensis sont observées au niveau des gènes gyrA et gyrB codant pour les topoisomérases de type II. L’impact fonctionnel de mutations de résistances aux fluoroquinolones a été caractérisé in vitro chez F. novicida, pris comme modèle de bactérie avirulente proche de F. tularensis. L’activité de superenroulement et de clivage de l’ADN en présence de fluoroquinolones a été déterminée suite à la reconstruction in vitro de complexes GyrA/GyrB fonctionnels. La résistance aux fluoroquinolones était la plus forte en cas de mutation D87G/D87Y pour la sous-unité GyrA ou +P466 pour la sous-unité GyrB. La mutation P43H située en dehors du QRDR de GyrA est à l’origine d’un plus faible niveau de résistance. La mutation D487R-∆K488 en dehors du QRDR de GyrB ne confère pas de résistance intrinsèque mais potentialise l’effet d’une mutation D87G concomitante. En revanche, l’identification de mutations de résistance in vivo au sein des QRDR des gènes gyrA et gyrB chez des patients en situation d’échec thérapeutique traités par une fluoroquinolone est demeurée négative. Enfin, notre recherche a permis d’identifier de nouveaux composés de synthèse de structure bis-indolique possédant des activités antibactériennes. Ces composés sont bactériostatiques vis-à-vis de F. tularensis mais bactéricides vis-à-vis des staphylocoques y compris vis-à-vis de souches multi-résistantes de Staphylococcus aureus avec des CMI90 évaluées à 2mg/L chez F. tularensis et S. aureus pour le composé le plus actif. La faible solubilité de ces composés en milieu aqueux, leur forte liaison aux protéines plasmatiques ainsi que la recherche de leur mécanisme d’action original appellent néanmoins de nombreux développements futurs. / Tularemia is a zoonosis caused by the highly pathogenic bacterium Francisella tularensis. The most virulent subspecies, F. tularensis subsp. tularensis, is found only in North America while the subspecies F. tularensis subsp. holarctica is present in the whole Northern hemisphere. In France, all strains belong to the biovar I of the subspecies holarctica and more specifically to the phylogenetic subclade B.FTNF002-00. Although tularemia is usually not a severe disease in France, many patients suffer from therapeutic failures despite receiving an appropriate treatment. These treatments failures are observed in up to 25% of patients treated with ciprofloxacin or gentamicin, and up to 35% if patients treated with doxycycline. The causes of those therapeutic failures remain poorly elucidated. Analysis of the literature and determination of the susceptibility of 59 French F. tularensis subsp. holarctica strains to 18 antibiotics confirmed that to date, no strain with acquired resistance to any of the first-line antibiotics used for treatment of tularemia have been isolated. The fluoroquinolones (in particular ciprofloxacin and levofloxacin) exhibit the lowest minimal inhibitory concentrations, compared to gentamicin and doxycycline. Data obtained in vitro and in animal models are concordant with human data concerning the efficacy of antibiotics and therapeutic failure rates. Thus, we advocate the use of ciprofloxacin as first-line treatment for mild form of tularemia, and the use of doxycyclin only as a second-line treatment in patients with contraindications to fluoroquinolones. Azithromycin and telithromycin may also be considered as potential therapeutic alternatives for tularemia cases caused by biovar I strains of the susbspecies holarctica, but only for patients with contraindications to first-line antibiotics. Further data in animal models are however required to consolidate our in vitro data. The in vitro selection of fluoroquinolone-resistant strains of F. tularensis has been reported. This suggests that the in vivo selection of such resistant mutants may occur. In vitro, the main fluoroquinolone resistance mutations occur in the gyrA and gyrB genes that encode type II topoisomerases of F. tularensis. We have characterized the functional impact of such mutations in avirulent F. novicida strains, taken as a surrogate of F. tularensis. Supercoiling and DNA cleavage activity of GyrA/GyrB complexes reconstituted in vitro have been determined in the presence of fluoroquinolones. Fluoroquinolone resistance level was the highest in strains with a D87G/D87Y mutation in the GyrA subunit or +P466 mutation in the GyrB subunit. The mutation P43H located outside the GyrA Quinolone-Resistance-Determining-Region (QRDR) confered significant but lower fluoroquinolone resistance. The mutation D487R-∆K488 also outside GyrB QRDR did not cause fluoroquinolone resistance by itself, but increased the resistance level in case of concomitant D87G mutation. No mutation could be identified in vivo in the QRDR of gyrA and gyrB genes amplified from clinical samples collected in patients treated with a fluoroquinolone, although some of them experienced therapeutic failure. Finally, while searching for new antibiotic compounds, we identified new synthetic bis-indolic derivatives with antibacterial activity. Lead compounds were only bacteriostatic against F. tularensis but bactericidal against staphylococci including against multi-drug-resistant Staphylococcus aureus. MIC90 were measured at 2mg/L for F. tularensis and S. aureus strains for the most active compound. However, many developments are still required to improve their solubility in water, decrease their plasma proteins binding and elucidate their original mechanism of action.

Page generated in 0.1054 seconds