• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 318
  • 117
  • 101
  • 58
  • 45
  • 33
  • 27
  • 24
  • 12
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • Tagged with
  • 852
  • 144
  • 112
  • 101
  • 99
  • 97
  • 94
  • 79
  • 78
  • 77
  • 74
  • 74
  • 70
  • 63
  • 62
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Modelling Deception Detection in Text

Gupta, Smita 29 November 2007 (has links)
As organizations and government agencies work diligently to detect financial irregularities, malfeasance, fraud and criminal activities through intercepted communication, there is an increasing interest in devising an automated model/tool for deception detection. We build on Pennebaker's empirical model which suggests that deception in text leaves a linguistic signature characterised by changes in frequency of four categories of words: first-person pronouns, exclusive words, negative emotion words, and action words. By applying the model to the Enron email dataset and using an unsupervised matrix-decomposition technique, we explore the differential use of these cue-words/categories in deception detection. Instead of focusing on the predictive power of the individual cue-words, we construct a descriptive model which helps us to understand the multivariate profile of deception based on several linguistic dimensions and highlights the qualitative differences between deceptive and truthful communication. This descriptive model can not only help detect unusual and deceptive communication, but also possibly rank messages along a scale of relative deceptiveness (for instance from strategic negotiation and spin to deception and blatant lying). The model is unintrusive, requires minimal human intervention and, by following the defined pre-processing steps it may be applied to new datasets from different domains. / Thesis (Master, Computing) -- Queen's University, 2007-11-28 18:10:30.45
132

Den fabricerande människan : om bedrägeri som vardaglig interaktionsform /

Arvidson, Markus, January 2007 (has links)
Diss. Karlstad : Karlstads universitet, 2007.
133

Sittenwidrigkeit, Rechtswidrigkeit und dolus malus : Typen und Leitlinien der Entscheidung, entwickelt an der Bankhaftung für Kreditmassnahmen /

Grunwald, Reinhard. January 1900 (has links)
Thesis (doctoral)--Universität Göttingen.
134

Strafbare voorbereidings-handelingen bij sommige soorten van valschheid : Artt. 214, 223 en 234 Wetboek van Strafrecht /

Klein, Johannes. January 1891 (has links)
Thesis (doctoral)--Universiteit van Amsterdam.
135

Supervised and unsupervised PRIDIT for active insurance fraud detection

Ai, Jing, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2008. / Vita. Includes bibliographical references.
136

Partner influence, team brainstorming, and fraud risk assessment some implications of SAS no. 99 /

Carpenter, Tina Daly. Reimers, Jane L. January 2004 (has links)
Thesis (Ph. D.)--Florida State University, 2004. / Advisor: Dr. Jane L. Reimers, Florida State University, College of Business, Dept. of Accounting. Title and description from dissertation home page (viewed June 15, 2004). Includes bibliographical references.
137

Abrechnungsbetrug durch Vertragsärzte /

Hancok, Heike. January 2006 (has links)
Thesis (doctoral)--Universität, Tübingen, 2006. / Includes bibliographical references (p. 267-295).
138

Μεθοδολογία ανίχνευσης απάτης μέσω διαχείρισης πληροφοριών βασισμένη σε μοντέλο οντολογίας

Μπενέτου, Ξανθή 14 December 2009 (has links)
Τα φαινόμενα απάτης τείνουν να κυριαρχήσουν τις τελευταίες δεκαετίες σε κάθε τομέα. Ένας τομέας που πλήττεται ιδιαίτερα στις μέρες μας είναι αυτός της υγειονομικής περίθαλψης γενικά και ειδικά της συνταγογράφησης των φαρμάκων. Οι υγειονομικές υπηρεσίες είναι ιδιαίτερα τρωτές στην απάτη και την κατάχρηση. Τόσο οι φορείς κοινωνικής ασφάλισης, όσο και οι ιδιωτικές ασφαλιστικές εταιρείες χάνουν όλο και περισσότερα χρήματα κάθε χρόνο, λόγω ψευδών αιτιών αποζημιώσεων. Το αντικείμενο της παρούσας διατριβής είναι ο σχεδιασμός και η ανάπτυξη μιας μεθοδολογίας ανίχνευσης και πρόληψης της απάτης, που θα μπορεί να εφαρμοστεί στις επιχειρησιακές διεργασίες των υπηρεσιών υγειονομικής περίθαλψης και θα εξασφαλίζει την ελαχιστοποίηση της απώλειας των σχετικών κεφαλαίων. Η ίδια θα είναι σε θέση να ανιχνεύει τα ύποπτα προς απάτη περιστατικά, εξασφαλίζοντας έτσι την ποιότητα και την συνέπεια των παρεχόμενων υπηρεσιών. / Fraud phenomena tend to dominate the last decades. A sector that is particularly affected in our days is that of healthcare domain in general and specifically prescriptions reimbursement. Healthcare services are particularly vulnerable in fraud and abuse. Not only institutions of social insurance, but also private companies lose more money each year, because of false causes of compensations. This thesis intends to illustrate the planning and development of a fraud detection methodology, which is accompanied and supported by a generic fraud ontological framework. This methodology will be able to detect erroneous or suspicious records, ensuring thus the quality and the consequence of provided services.
139

Recherche sur la fraude en droit administratif : contribution à l'étude de l'acte obtenu par fraude / Research on the notion of fraud in administrative law : contribution to the study of the act obtained by fraud

Bossy-Taleb, Myriam 31 March 2018 (has links)
La fraude, est une notion qui fait partie intégrante des mœurs de notre société. Elle se rattache à la nature humaine. Tout le monde s'accorde à la reconnaître comme un phénomène universel et perpétuel. Dans la pratique, on la retrouve dans toutes les branches du droit. Cependant, on ne relève aucune étude sur la fraude en droit administratif. Ainsi, notre thèse se propose d'appréhender ce phénomène à travers l'acte administratif obtenu par fraude. Apparu tardivement dans la jurisprudence administrative, la présente étude s'est d'abord consacrée à préciser ses contours en la distinguant et la délimitant des notions voisines. L'identification de ses différentes manifestations et l'intention du fraudeur sont mises en lumière. L'étude de son régime juridique s'est ensuite imposé. Un principe de sanction systématique qui permet à l'administration de révoquer l'acte administratif entaché de fraude de manière perpétuelle a été mis en place. La nature de l'acte obtenu par fraude s'est ainsi précisée / Fraud is a concept that is an integral part of the standards of our society. It is a notion that is related to human nature. Everyone agrees to recognize it as a universal and perpetual phenomenon. In practice, it is found in all branches of law. However, there is no conception of the fraud theory which is specific to the administrative law. Then, our study proposes to apprehend this phenomenon through the administrative act obtained by fraud. As We noticed the notion of fraud appeared late in administrative jurisprudence, the present study was first devoted to clarify its outlines by distinguishing and delimiting other neighboring concepts. A systematic sanctioning principle that allows the administration to revoke the perpetually fraudulent administrative act has been introduced. The nature of the act obtained by fraud has thus been specified
140

Neural networks forecasting and classification-based techniques for novelty detection in time series

Oliveira, Adriano Lorena Inácio de 31 January 2011 (has links)
Made available in DSpace on 2014-06-12T15:52:37Z (GMT). No. of bitstreams: 2 arquivo4525_1.pdf: 1657788 bytes, checksum: 5abba3555b6cbbc4fa073f1b718d6579 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2011 / O problema da detecção de novidades pode ser definido como a identificação de dados novos ou desconhecidos aos quais um sistema de aprendizagem de máquina não teve acesso durante o treinamento. Os algoritmos para detecção de novidades são projetados para classificar um dado padrão de entrada como normal ou novidade. Esses algoritmos são usados em diversas areas, como visão computacional, detecçãao de falhas em máquinas, segurança de redes de computadores e detecção de fraudes. Um grande número de sistemas pode ter seu comportamento modelado por séries temporais. Recentemente o pro oblema de detecção de novidades em séries temporais tem recebido considerável atenção. Várias técnicas foram propostas, incluindo téecnicas baseadas em previsão de séries temporais com redes neurais artificiais e em classificação de janelas das s´eries temporais. As t´ecnicas de detec¸c ao de novidades em s´eries temporais atrav´es de previs ao t em sido criticadas devido a seu desempenho considerado insatisfat´orio. Em muitos problemas pr´aticos, a quantidade de dados dispon´ıveis nas s´eries ´e bastante pequena tornando a previs ao um problema ainda mais complexo. Este ´e o caso de alguns problemas importantes de auditoria, como auditoria cont´abil e auditoria de folhas de pagamento. Como alternativa aos m´etodos baseados em previs ao, alguns m´etodos baseados em classificação foram recentemente propostos para detecção de novidades em séries temporais, incluindo m´etodos baseados em sistemas imunol´ogicos artificiais, wavelets e m´aquinas de vetor de suporte com uma ´unica classe. Esta tese prop oe um conjunto de m´etodos baseados em redes neurais artificiais para detecção de novidades em séries temporais. Os métodos propostos foram projetados especificamente para detec¸c ao de fraudes decorrentes de desvios relativamente pequenos, que s ao bastante importantes em aplica¸c oes de detec¸c ao de fraudes em sistemas financeiros. O primeiro m´etodo foi proposto para melhorar o desempenho de detec¸c ao de novidades baseada em previs ao. Este m´etodo ´e baseado em intervalos de confian¸ca robustos, que s ao usados para definir valores adequados para os limiares a serem usados para detec¸c ao de novidades. O m´etodo proposto foi aplicado a diversas s´eries temporais financeiras e obteve resultados bem melhores que m´etodos anteriores baseados em previs ao. Esta tese tamb´em prop oe dois diferentes m´etodos baseados em classifica¸c ao para detec ¸c ao de novidades em s´eries temporais. O primeiro m´etodo ´e baseado em amostras negativas, enquanto que o segundo m´etodo ´e baseado em redes neurais artificiais RBFDDA e n ao usa amostras negativas na fase de treinamento. Resultados de simula¸c ao usando diversas s´eries temporais extra´ıdas de aplica¸c oes reais mostraram que o segundo m´etodo obt´em melhor desempenho que o primeiro. Al´em disso, o desempenho do segundo m´etodo n ao depende do tamanho do conjunto de teste, ao contr´ario do que acontece com o primeiro m´etodo. Al´em dos m´etodos para detec¸c ao de novidades em s´eries temporais, esta tese prop oe e investiga quatro diferentes m´etodos para melhorar o desempenho de redes neurais RBF-DDA. Os m´etodos propostos foram avaliados usando seis conjuntos de dados do reposit´orio UCI e os resultados mostraram que eles melhoram consideravelmente o desempenho de redes RBF-DDA e tamb´em que eles obt em melhor desempenho que redes MLP e que o m´etodo AdaBoost. Al´em disso, mostramos que os m´etodos propostos obt em resultados similares a k-NN. Os m´etodos propostos para melhorar RBF-DDA foram tamb´em usados em conjunto com o m´etodo proposto nesta tese para detec¸c ao de novidades em s´eries temporais baseado em amostras negativas. Os resultados de diversos experimentos mostraram que esses m´etodos tamb´em melhoram bastante o desempenho da detec¸c ao de fraudes em s´eries temporais, que ´e o foco principal desta tese.

Page generated in 0.0258 seconds