• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 42
  • 42
  • 11
  • 10
  • 10
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Radiation Induced Degradation Pathways for Poly (Methyl Methacrylate) and Polystyrene Polymers as Models for Polymer Behavior in Space Environments

Heffner, Kenneth Henry 17 November 2003 (has links)
Modeling methods are required for predicting the chemical stability of macromolecular materials used in critical spacecraft components of satellites orbiting in the high-energy radiation environment of near earth and deep space planetary magnetic belts. Methods for establishing degradation mechanisms and predicting and simulating the total absorbed dose and ionization for long term space missions are presented herein. This investigation evaluates cross-linking, main-chain scission and elimination products in a linear series of narrowly dispersed poly(methyl methacrylate) (PMMA) and polystyrene (PS) polymers. A comparison is made of the scission radiation yield (Gs) and crosslinking (Gx) predicted for the simulated ionization data to the results of degradation in a ground-based simulation of the space radiation environment using a 60Co source. The influence of molecular weight on the stability of post-irradiated polymer is evident in the degree of change observed for each molecular weight series with respect to the degradation products produced by exposure to gamma radiation. The analysis of the specific polymer degradation products and changes in the average molecular weight (Mw) were performed using chemical analysis (FTIR and GPC) and thermal analysis (DSC). The analytical results for PMMA and polystyrene radiation-induced degradation products demonstrate that, depending on Mw, the amount and types of degradation products will vary with respect to crosslinking, chain scission and other oxidative pathways. The results support the preference for end group loss with free volume properties driving the observed differences in the G(s) and (Gx) values. The cross-linking observed for polystyrene is controlled by molecular weight as well wherein the lowest molecular weight molecules display greater resistance to cross-linking. This research investigation employs proven tools of analysis (NASA AP8 and AE8) that accurately predict the amount of energy applied to spacecraft materials during a typical near-earth, aggressive mission environment . Another model (SPENVIS) is applied to determine the amount of total energy absorbed by the spacecraft materials from proton, electron and Brehmsstralung radiation throughout the mission life. Another set of models (SRIM and CASINO) are used to asses the range of penetration of particles into the materials and the extent of ionization caused by the particle spectrum and fluence. The absorption coefficients for the PS and PMMA structure are determined to ensure good correlation between ground simulation and the true space environment. The total dose values are used to establish the total dose that is to be deposited during the ground simulation experiments. A 60Co irradiator was used as the ground simulation source. Dosimetry was used to determine the exposure time needed to deposit an equivalent amount of dose accumulation needed to simulate the total dose modeled for the space mission. Using gel permeation chromatography, previous studies have demonstrated that the characteristic Gaussian distribution of narrowly-dispersed PS and PMMA is perturbed by the accumulation of degradation products following irradiation. The change in distribution provides insight into the preferred path of degradation. The role of free volume in the glass transition temperature are reported with respect to Tg variation with molecular weight. Using differential scanning calorimetry. The role of free volume in the determination of the mechanism of radiation-induced degradation is a primary focus of this investigation when considering the ability of the main chain to recombine or undergo abstraction as opposed to crosslinking or scission where motion is restricted in the solid state. The subtle distinction of structural changes brought about by the loss of side groups, double bond formation and crosslinking have been characterized by infrared spectroscopy. The resultant spectra of irradiated polymers offer considerable information on verifying the extent of competing reactions that involve structural features of the molecule. These instrumental methods are the tools of research that will assess the affect of molecular structure on polymer radiation resistance, and will support the rationale explaining the preference for one degradation mechanism over another. This research investigation has yielded information on the affect of polymer molecular structure on radiation resistance. The work goes beyond previous studies that define empirical observations for a change in radiation resistance by virtue of a change in side group. The effect of free volume, stabilized intermediates and reactive intermediates are related to molecular weight and side group functionality. The understanding of the mechanistic rationale behind the effect of structural features on polymer radiation resistance are essential to the development of modeling systems for predicting polymer stability in space mission environments.
12

Monotonic and Cyclic Compression Behavior of Bulk Metallic Glasses

Freels, Matthew Webster 01 May 2010 (has links)
The cyclic-compression behavior of a Cu45Zr45Al5Ag5 bulk metallic glass (BMG) was investigated in order to elucidate the damage initiation and growth mechanisms. The present Cu45Zr45Al5Ag5 BMG was found to have the highest fatigue-endurance limit for BMGs reported to date. Fracture under cyclic compression occurred in a pure shear mode. In addition to many shear bands and cracks, areas of “chipping” were commonly found on the outside surfaces of the fatigue specimens. Crack growth rates were found decrease with cycles. The effects of the as-cast specimen size, cooling rate, and the free volume content on the monotonic and cyclic compression behavior of a Zr-based BMG was investigated. The smaller samples experienced a faster cooling rate, resulting in a higher free volume content. The smaller samples displayed superior monotonic compression and cyclic compression properties. This trend was attributed to a higher free volume content. The effect of the sample aspect ratio (height/diameter) on the cyclic compression behavior of a Zr-based BMG was explored. For smaller aspect ratios (0.5), the yield strength and compressive plastic strain significantly increased when compared to that for an aspect ratio of 2. In general, when the aspect ratio was 0.5, the fatigue lives were longer than when the aspect ratio was 2. The dramatic effect of the sample aspect ratio was attributed to the development of a hydrostatic stress state from the interaction of the uniaxial applied load and the friction stress developed at the interface of the top and bottom specimen surfaces and the platens. The stress-life fatigue behavior and fracture morphology of a (Cu60Zr30Ti10)99Sn1 BMG alloy was investigated under both 3-point and 4-point bending conditions. For all stress levels tested, the fatigue lifetimes tended to be higher for the 3-point loading condition. All fracture surfaces were found to be comprised of four main regions: a crack-initiation site, a stable crack-growth region, an unstable fast-fracture region, and a melting region. Finely spaced parallel marks oriented somewhat perpendicular to the direction of crack propagation were observed in the stable crack-growth region. Analyses of these marks found that their spacing increased with increasing stress intensity- factor range.
13

The influence of Morphology on the Transport and Mechanical Properties of Polyethylene

Neway, Bereket January 2003 (has links)
The sorption/desorption behaviour of n-hexane in high molarmass linear polyethylene (PE) and branched PEs with 0.39 and5.09 hexyl branches per 100 main chain C atoms andcrystallinities between 4 and 82% at 298 K has been studied.Crystal core contents determined by Raman spectroscopy werealways lower than those determined by density measurements. Then-hexane solubilities in the copolymers depended in anon-linear manner on the content of penetrable polymercomponent and were lower for homogeneous copolymers than forheterogeneous copolymers at the same contents of penetrablecomponent. The solubility of hexane in the linear PE sampleswas proportional to the volume fraction of the penetrablepolymer and the solubility was low in comparison with that ofthe branched PE of the same crystallinity. TheCohen-Turnbull-Fujita (CTF) free volume theory was capable ofdescribing the desorption process in the PEs studied. Theconcentration dependence of the thermodynamic diffusivitypredicted by the CTF free volume theory was confirmed by thedata obtained by the differential method, and the differencesbetween the results obtained by the integral and differentialmethods were within the margins of experimental error. Thedependence of the fractional free volume of the penetrablephases on the phase composition suggests that mass transporttakes place from the liquid-like component to the interfacialcomponent and that the penetrant molecules are trapped at theinterfacial sites. The linear PE samples showed a physicallyrealistic trend with a decrease in the geometrical impedancefactor (t) with decreasing degree of crystallinity, whereas theopposite trend was obtained for the copolymers. The decrease int with increasing crystallinity in the copolymers may beexplained by the presence of wide crystal lamellae in the lowcrystallinity samples. A novel melt-extrusion method was used to createcircumferential chain orientation in pipes of crosslinked PE.The microstructure of the pipes was characterized usingdifferential scanning calorimetry (DSC), density measurements,X-ray diffraction, infrared dichroism and contractionmeasurements. The mechanical properties were assessed byuniaxial tensile tests. The maximum degree of circumferentialorientation was obtained at the inner wall of the orientedpipe. The oriented pipe material exhibited a 5-15% higherdegree of crystallinity and a greater crystal thickness thanconventionally crosslinked pipe. The circumferential and axialmoduli of the oriented, crosslinked pipe were greater than thecorresponding moduli of the non-oriented crosslinked pipe. Blends of single-site materials of linear PE andethyl-branched PE were prepared using solution- and melt-mixingmethods. The thermal properties of the blends were studied byDSC and results obtained by the two mixing methods werecompared. Data obtained for heats of melting andcrystallization, melting and crystallization peak temperaturesand melting and crystallization temperature profiles wereessentially the same for the samples obtained by the two mixingmethods. The heat associated with the high temperature meltingpeak of the blend samples obtained by both preparation methodsafter crystallization at 398 K was higher than that of thelinear polyethylene included in the blends, suggesting that apart of the branched polyethylene crystallized at 398 K. <b>Key words:</b>n-Hexane diffusion, polyethylene, free volume,solubility, sorption, desorption, mechanical properties,orientation, thermal properties, blend.
14

The influence of Morphology on the Transport and Mechanical Properties of Polyethylene

Neway, Bereket January 2003 (has links)
<p>The sorption/desorption behaviour of n-hexane in high molarmass linear polyethylene (PE) and branched PEs with 0.39 and5.09 hexyl branches per 100 main chain C atoms andcrystallinities between 4 and 82% at 298 K has been studied.Crystal core contents determined by Raman spectroscopy werealways lower than those determined by density measurements. Then-hexane solubilities in the copolymers depended in anon-linear manner on the content of penetrable polymercomponent and were lower for homogeneous copolymers than forheterogeneous copolymers at the same contents of penetrablecomponent. The solubility of hexane in the linear PE sampleswas proportional to the volume fraction of the penetrablepolymer and the solubility was low in comparison with that ofthe branched PE of the same crystallinity. TheCohen-Turnbull-Fujita (CTF) free volume theory was capable ofdescribing the desorption process in the PEs studied. Theconcentration dependence of the thermodynamic diffusivitypredicted by the CTF free volume theory was confirmed by thedata obtained by the differential method, and the differencesbetween the results obtained by the integral and differentialmethods were within the margins of experimental error. Thedependence of the fractional free volume of the penetrablephases on the phase composition suggests that mass transporttakes place from the liquid-like component to the interfacialcomponent and that the penetrant molecules are trapped at theinterfacial sites. The linear PE samples showed a physicallyrealistic trend with a decrease in the geometrical impedancefactor (t) with decreasing degree of crystallinity, whereas theopposite trend was obtained for the copolymers. The decrease int with increasing crystallinity in the copolymers may beexplained by the presence of wide crystal lamellae in the lowcrystallinity samples.</p><p>A novel melt-extrusion method was used to createcircumferential chain orientation in pipes of crosslinked PE.The microstructure of the pipes was characterized usingdifferential scanning calorimetry (DSC), density measurements,X-ray diffraction, infrared dichroism and contractionmeasurements. The mechanical properties were assessed byuniaxial tensile tests. The maximum degree of circumferentialorientation was obtained at the inner wall of the orientedpipe. The oriented pipe material exhibited a 5-15% higherdegree of crystallinity and a greater crystal thickness thanconventionally crosslinked pipe. The circumferential and axialmoduli of the oriented, crosslinked pipe were greater than thecorresponding moduli of the non-oriented crosslinked pipe.</p><p>Blends of single-site materials of linear PE andethyl-branched PE were prepared using solution- and melt-mixingmethods. The thermal properties of the blends were studied byDSC and results obtained by the two mixing methods werecompared. Data obtained for heats of melting andcrystallization, melting and crystallization peak temperaturesand melting and crystallization temperature profiles wereessentially the same for the samples obtained by the two mixingmethods. The heat associated with the high temperature meltingpeak of the blend samples obtained by both preparation methodsafter crystallization at 398 K was higher than that of thelinear polyethylene included in the blends, suggesting that apart of the branched polyethylene crystallized at 398 K.</p><p><b>Key words:</b><i>n</i>-Hexane diffusion, polyethylene, free volume,solubility, sorption, desorption, mechanical properties,orientation, thermal properties, blend.</p>
15

Radiation induced degradation pathways for poly (methyl methacrylate) and polystyrene polymers as models for polymer behavior in space environments [electronic resource] / by Kenneth Henry Heffner.

Heffner, Kenneth Henry. January 2003 (has links)
Includes vita. / Title from PDF of title page. / Document formatted into pages; contains 172 pages. / Thesis (PH.D.)--University of South Florida, 2003. / Includes bibliographical references. / Text (Electronic thesis) in PDF format. / ABSTRACT: Modeling methods are required for predicting the chemical stability of macromolecular materials used in critical spacecraft components of satellites orbiting in the high-energy radiation environment of near earth and deep space planetary magnetic belts. Methods for establishing degradation mechanisms and predicting and simulating the total absorbed dose and ionization for long term space missions are presented herein. This investigation evaluates cross-linking, main-chain scission and elimination products in a linear series of narrowly dispersed poly(methyl methacrylate) (PMMA) and polystyrene (PS) polymers. A comparison is made of the scission radiation yield (Gs) and crosslinking (Gx) predicted for the simulated ionization data to the results of degradation in a ground-based simulation of the space radiation environment using a 60Co source. / ABSTRACT: The influence of molecular weight on the stability of post-irradiated polymer is evident in the degree of change observed for each molecular weight series with respect to the degradation products produced by exposure to gamma radiation. The analysis of the specific polymer degradation products and changes in the average molecular weight (Mw) were performed using chemical analysis (FTIR and GPC) and thermal analysis (DSC). The analytical results for PMMA and polystyrene radiation-induced degradation products demonstrate that, depending on Mw, the amount and types of degradation products will vary with respect to crosslinking, chain scission and other oxidative pathways. The results support the preference for end group loss with free volume properties driving the observed differences in the G(s) and (Gx) values. / ABSTRACT: The cross-linking observed for polystyrene is controlled by molecular weight as well wherein the lowest molecular weight molecules display greater resistance to cross-linking. This research investigation employs proven tools of analysis (NASA AP8 and AE8) that accurately predict the amount of energy applied to spacecraft materials during a typical near-earth, aggressive mission environment . Another model (SPENVIS) is applied to determine the amount of total energy absorbed by the spacecraft materials from proton, electron and Brehmsstralung radiation throughout the mission life. Another set of models (SRIM and CASINO) are used to asses the range of penetration of particles into the materials and the extent of ionization caused by the particle spectrum and fluence. The absorption coefficients for the PS and PMMA structure are determined to ensure good correlation between ground simulation and the true space environment. / ABSTRACT: The total dose values are used to establish the total dose that is to be deposited during the ground simulation experiments. A 60Co irradiator was used as the ground simulation source. Dosimetry was used to determine the exposure time needed to deposit an equivalent amount of dose accumulation needed to simulate the total dose modeled for the space mission. Using gel permeation chromatography, previous studies have demonstrated that the characteristic Gaussian distribution of narrowly-dispersed PS and PMMA is perturbed by the accumulation of degradation products following irradiation. The change in distribution provides insight into the preferred path of degradation. The role of free volume in the glass transition temperature are reported with respect to Tg variation with molecular weight. Using differential scanning calorimetry. / ABSTRACT: The role of free volume in the determination of the mechanism of radiation-induced degradation is a primary focus of this investigation when considering the ability of the main chain to recombine or undergo abstraction as opposed to crosslinking or scission where motion is restricted in the solid state. The subtle distinction of structural changes brought about by the loss of side groups, double bond formation and crosslinking have been characterized by infrared spectroscopy. The resultant spectra of irradiated polymers offer considerable information on verifying the extent of competing reactions that involve structural features of the molecule. These instrumental methods are the tools of research that will assess the affect of molecular structure on polymer radiation resistance, and will support the rationale explaining the preference for one degradation mechanism over another. / ABSTRACT: This research investigation has yielded information on the affect of polymer molecular structure on radiation resistance. The work goes beyond previous studies that define empirical observations for a change in radiation resistance by virtue of a change in side group. The effect of free volume, stabilized intermediates and reactive intermediates are related to molecular weight and side group functionality. The understanding of the mechanistic rationale behind the effect of structural features on polymer radiation resistance are essential to the development of modeling systems for predicting polymer stability in space mission environments. / System requirements: World Wide Web browser and PDF reader. / Mode of access: World Wide Web.
16

Preparation and characterization of disulfonated polysulfone films and polyamide thin film composite membranes for desalination

Xie, Wei, 1982- 30 January 2012 (has links)
The current reverse osmosis desalination membrane market is dominated by aromatic polyamide thin film composite (TFC) membranes. However, these polyamide membranes suffer from poor resistance to continual exposure to oxidizing agents such as chlorine in desalination applications. To overcome these problems, we have synthesized and characterized a new generation of materials, disulfonated poly(arylene ether sulfone) (BPS) random copolymer, for desalination membranes. A key technical feature of these new materials is their high tolerance to chlorine in feed water and their excellent reproducibility in synthesis. In this study, water and sodium chloride solubility, diffusivity and permeability in BPS copolymers were measured for both acid and salt form samples at sulfonation levels from 20 to 40 mol percent. The hydrophilicity of these materials, based on water uptake, increased significantly as sulfonation level increased. The water and salt diffusivity and permeability were correlated with water uptake, consistent with expectations from free volume theory. In addition, a tradeoff was observed between water/salt solubility, diffusivity, and permeability selectivity and water solubility, diffusivity and permeability, respectively. The influence of cation form and degree of sulfonation on free volume, as probed via positron annihilation lifetime spectroscopy (PALS), was determined in BPS random copolymers in both the dry and hydrated states. PALS-based free volume data for hydrated polymers were correlated with water and salt transport properties. The influence of processing history on transport properties of BPS films was also studied. Potassium form BPS films having a 32 mol% sulfonation level were acidified using solid state and solution routes. Additionally, several films were subjected to various thermal treatments in the solid state. The influence of acidification, thermal treatment, and counter-ion form on transport properties was investigated. Finally, the influence of synthesis methods of polyamide TFC membranes from m-phenylenediamine (MPD) and trimesoyl chloride (TMC) via interfacial polymerization on transport properties is reported. Then, a disulfonated diamine monomer (S-BAPS) was used instead of MPD to prepare TFC membranes. The resulting membranes exhibited reduced chlorine tolerance than those prepared from MPD. However, introduction of S-BAPS to the MPD/TMC polymerization system increased the fouling resistance of the resulting polyamide TFC membranes. / text
17

Determination of nanogram mass and measurement of polymer solution free volume using thickness-shear mode (tsm) quartz resonators

Richardson, Anthony James 01 June 2009 (has links)
More commonly referred to as a quartz crystal microbalance (QCM), thickness-shear mode (TSM) quartz resonator devices utilize an acoustic wave to establish a bulk-detection mechanism prompting their utilization as gravimetric sensors with nanogram mass sensitivity and capability to measure various film property dynamics, due to variations in the system environment, of thin-films that are uniformly distributed across the resonator surface. The development of an absolute TSM-based nanobalance and an experimental technique using conventional TSM resonators for the real-time measurement of the change in the viscoelastic shear modulus and fractional free-hole volume of a poly(isobutylene) film due to the sorption of various organic vapors are presented in this thesis work. Development of an electrode-modified TSM quartz resonator that is responsive to nanogram mass loadings, while exhibiting a mass sensitivity profile that is independent of material placement on the sensor platform, is detailed in this thesis work. The resulting nanogram balance would greatly enhance the field of mass measurement and become useful in applications such as droplet gravimetry, the study of non-volatile residue (NVR) contamination in solvents. A ring electrode design predicted by an analytical theory for sensitivity distribution to achieve the desired uniform mass sensitivity distribution is presented in this work. Using a microvalve capable of depositing nanogram droplets of a polymer solution, and a linear stepping stage for radial positioning of these droplets across the sensor platform, measurements of the mass sensitivity distributions were conducted and are presented. The measurements agree well with theory. Further improvements are possible and are identified to achieve better uniformity and to reduce the instability in the resonant frequency of these devices. Additionally, droplet gravimetric results for NVR in methanol droplets using the modified TSM devices are presented, which compare well with determinations made by evaporation of larger volumes of the stock solutions. Storage modulus, G', loss modulus, G", and, consequently, the shear modulus, G (G=G'+jG"), of polymer and polymer/solvent systems were measured in this work using a TSM quartz resonator. The polymer poly(isobutylene) was spin-coated as a film of a few microns thickness on the surface of the TSM device and, upon inducing oscillation of the device at its resonance frequency (several mega-Hertz), the impedance characteristics were measured. In addition, the poly(isobutylene) film was exposed to known weight concentrations, up to 20%, of benzene, chloroform, n-hexane, and dichloromethane vapors diluted in nitrogen gas, and the impedance characteristics were measured. Data collected from the impedance analyzer were examined by modeling the polymer and polymer/solvent loaded TSM device with an electrical equivalent circuit and a mechanical perturbation model to reliably yield the shear modulus. Using a superposition theory and the shear modulus, the fractional free volume of the polymer/solvent systems were determined. These results correlate well with values found using the Vrentas-Duda free-volume (FV) theory. A novel experimental technique for measuring fractional free-hole volumes of polymer/solvent mixtures is established in this thesis work.
18

Estudo da influência do volume livre sobre os mecanismos de foto-isomerização em azo-polímeros / The study of the free volume influence on the mechanisms of photoisomerization on azopolymers.

Fernando Fuzinatto Dall'Agnol 01 April 2003 (has links)
Polímeros com grupos azobenzênicos exibindo fotoisomerização reversível trans-cis-trans tem sido usado para armazenamento óptico, chaves ópticas e produção de grades de relevo. A fotoisomerização produzida por luz linearmente polarizada cria uma orientação molecular perpendicular a polarização da luz (hole-burning angular) que induz a birrefringência na amostra. Neste trabalho, medimos a birrefringência foto induzida em filmes de poliestireno dopado com corante vermelho disperso 1 (DR1) em função da temperatura. A amplitude da birrefringência aumenta com a temperatura entre 20 e 180 K, atinge um máximo e diminui a zero próximo da temperatura de transição vítrea do polímero, a qual é da ordem de 373 K. A amplitude da birrefringência é proporcional a concentração de DR1 e também depende da história térmica da amostra. Propõe-se um modelo teórico que leva em conta a mudança de volume livre do polímero com a temperatura, representando um passo além dos modelos conhecidos. Assumimos que as moléculas de DR1 ocupam cavidades do polímero e a função distribuição Gama é usada para descrever a distribuição dos volumes das cavidades, enquanto a função Gaussiana descreve as flutuações térmicas de volume em torno de seu valor médio. A isomerização das moléculas de DR1 só podem ocorrer em cavidades com volume maior que um valor crítico. A comparação entre o modelo e os dados experimentais mostra uma razoável concordância. O modelo prevê corretamente a dependência da birrefringência com o tempo, com a temperatura e com a história térmica da amostra, já que o volume livre do polímero depende dessa história. / Polymers with azobenzene groups exhibiting reversible trans-cis-trans photoisomerization characteristics have been used for optical storage, optical switching and production of surface relief gratings. The photoisomerization produced by a linearly polarized light leads to a molecular orientation perpendicular to the light polarization (angular hole burning), which induces a birefringence on the sample. In this work we report on the photoisomerization of films of polystyrene (PS) doped with disperse red 1 (DR1), performed at various temperatures. The birefringence amplitude rises with temperature from 10 to 270 K, goes through a maximum and decays to zero near the polystyrene transition temperature, which is 370 K. The birefringence amplitude, at a given temperature, is proportional to the DR1 content and also depends on the sample thermal history. We proposed a model that accounts for the change in free volume of the polymer with temperature though representing an improvement to well-known models. We assume that the azobenzene group is inside a local free volume and the Gamma distribution function is used to describe a local free volume distribution in the sample while the Gaussian distribution function gives the thermal free-volume fluctuation. Isomerization of the azobenzene group only occurs if the local free volume is larger than a critical value. Comparison with the experimental data shows that the model explains the temporal evolution, the temperature dependence of the birefringence and how the birefringence is affected by the sample thermal history, as the sample free volume of the polymer depends on such history.
19

OXYGEN TRANSPORT AS A STRUCTURE PROBE FOR HETEROGENEOUS POLYMERIC SYSTEMS

Hu, Yushan 08 April 2005 (has links)
No description available.
20

Mesoscale modeling of mechanical deformation of metallic glasses

Zhao, Pengyang 15 May 2015 (has links)
No description available.

Page generated in 0.0589 seconds