• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dust Control Examination using Computational Fluid Dynamics Modeling and Laboratory Testing of Vortecone and Impingement Screen Filters

Kumar, Ashish R. 01 January 2018 (has links)
Heavy industries, such as mining, generate dust in quantities that present an occupational health hazard. Prolonged exposure to the respirable dust has been found to result in many irreversible occupational ailments in thousands of miners. In underground mining applications, a variety of scrubbing systems are used to remove dust near the zones of generation. However, the wire-mesh type fibrous screens in the flooded-bed dust scrubbers used on continuous miners, are prone to clogging due to the accumulation of dust particles. This clogging results in a reduced capture efficiency and a higher exposure to the personnel. This research establishes the Vortecone, an inertial wet scrubber system, as a suitable alternative to the existing filters. The Vortecone accelerates its inlet fluids into a rapid circulatory motion into a vortex chamber, preferentially moving the heavier particles towards the impermeable surface to be trapped by the circulating water film. Vortecones are used on automobile painting lines and capture over-sprayed paint particles with cleaning efficacies exceeding 99 % while requiring only infrequent maintenance. The existing design of the Vortecone could also be altered to control the flow patterns. This dissertation presents detailed computational fluid dynamics (CFD) models to describe air flow patterns in the Vortecone in steady and transient states. Multi-phase spray models were generated to simulate injection of water into the Vortecone. The volume of fraction (VOF) approach was adopted to mimic the air-water interface. The Lagrangian particle tracking method was used to model particle capture on the interface described by the VOF. The CFD models indicate excellent cleaning efficacies, especially of larger particles. Laboratory experiments with optical measurements of aerosols in a reduced scale model of the Vortecone validate the computer models. These experiments which were performed on dust samples with particle sizes 0.3 μm and above, show that the Vortecone captures 90 % particles by mass exceeding about 5.20 and 3.20 μm at air flows of 0.28 m3/s (600 cfm) and 0.38 m3/s (800 cfm), respectively. The development of detailed large eddy simulations (LES) of air flow in the Vortecone provides a novel contribution to research by better resolving the flow patterns. An impactor-type, self-cleaning, non-clogging impingement screen system was designed as a substitute for conventional screens used in continuous miners. The screen could further be used as an efficient dust capturing mechanism with a demister in general mining applications. CFD models and laboratory experiments are presented to establish the cleaning efficacies of the system. Laboratory experiments to investigate the cleaning efficiency of a fibrous-type conventional screen is also discussed. The parameter, filter selection factor, is proposed to compare the performance of the three systems (Vortecone, fibrous screen, and impingement screen) under similar flows. The Vortecone has been found to be the most efficient dust-cleansing system, although it is the most power intensive fillter. The impingement screen shows a similar cleaning efficiency and a much higher availability compared to the conventional fibrous screen. Because of its minimal maintenance requirement, the impingement screen shows significant promise in dust-control applications in mining.
2

Modeling Free Surface Flows and Fluid Structure Interactions using Smoothed Particle Hydrodynamics

Nair, Prapanch January 2015 (has links) (PDF)
Recent technological advances are based on effectively using complex multiphysics concepts. Therefore, there is an ever increasing need for accurate numerical al-gorithms of reduced complexity for solving multiphysics problems. Traditional mesh-based simulation methods depend on a neighbor connectivity information for formulation of operators like derivatives. In large deformation problems, de-pendence on a mesh could prove a limitation in terms of accuracy and cost of preprocessing. Meshless methods obviate the need to construct meshes thus al-lowing simulations involving severe geometric deformations such as breakup of a contiguous domain into multiple fragments. Smoothed Particle Hydrodynamics (SPH) is a meshless particle based Lagrangian numerical method that has the longest continuous history of development ever since it was introduced in 1977. Commensurate with the significant growth in computational power, SPH has been increasingly applied to solve problems of greater complexity in fluid mechanics, solid mechanics, interfacial flows and astrophysics to name a few. The SPH approximation of the continuity and momentum equations govern-ing fluid flow traditionally involves a stiff equation of state relating pressure and density, when applied to incompressible flow problems. Incompressible Smoothed Particle Hydrodynamics (ISPH) is a variant of SPH that replaces this weak com-pressibility approach with a pressure equation that gives a hydrostatic pressure field which ensures a divergence-free (or density invariant) velocity field. The present study explains the development of an ISPH algorithm and its implementa-tion with focus on application to free surface flows, interaction of fluid with rigid bodies and coupling of incompressible fluids with a compressible second phase. Several improvements to the exiting ISPH algorithm are proposed in this study. A semi-analytic free surface model which is more accurate and robust compared to existing algorithms used in ISPH methods is introduced, validated against experi-ments and grid based CFD results. A surface tension model with specific applica-bility to free surfaces is presented and tested using 2D and 3D simulations. Using theoretical arguments, a volume conservation error in existing particle methods in general is demonstrated. A deformation gradient based approach is used to derive a new pressure equation which reduces these errors. The method is ap-plied to both free surface and internal flow problems and is shown to have better volume conservation and therefore reduced density fluctuations. Also, comments on instabilities arising from particle distributions are made and the role of the smoothing functions in such instabilities is discussed. The challenges in imple-menting the ISPH algorithm in a computer code are discussed and the experience of developing an in-house ISPH code is described. A parametric study on water entry of cylinders of different shapes, angular velocity and density is performed and aspects such as surface profiles, impact pressures and penetration velocities are compared. An analysis on the energy transfer between the solid and the fluid is also performed. Low Froude number water entry of a sphere is studied and the impact pressure is compared with the theoretical estimates. The Incompressible SPH formulation, employing the proposed improvements from the study is then coupled with a compressible SPH formulation to perform two phase flow simulations interacting compressible and incompressible fluids. To gain confidence in its applicability, the simulations are compared against the theoretical predication given by the Rayleigh-Plesset equation for the problem of compressible drop in an incompressible fluid.

Page generated in 0.0937 seconds