• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 8
  • 5
  • 2
  • 1
  • Tagged with
  • 27
  • 27
  • 10
  • 10
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Domain decomposition algorithms for transport and wave propagation equations

Gerardo Giorda, Luca 09 December 2002 (has links)
Not available
2

Schémas numériques explicites à mailles décalées pour le calcul d'écoulements compressibles / Explicit staggered schemes for compressible flows

Nguyen, Tan trung 12 February 2013 (has links)
We develop and analyse explicit in time schemes for the computation of compressible flows, based on staggered in space. Upwinding is performed equation by equation only with respect to the velocity. The pressure gradient is built as the transpose of the natural divergence. For the barotropic Euler equations, the velocity convection is built to obtain a discrete kinetic energy balance, with residual terms which are non-negative under a CFL condition. We then show that, in 1D, if a sequence of discrete solutions converges to some limit, then this limit is the weak entropy solution. For the full Euler equations, we choose to solve the internal energy balance since a discretization of the total energy is rather unnatural on staggered meshes. Under CFL-like conditions, the density and internal energy are kept positive, and the total energy cannot grow. To obtain correct weak solutions with shocks satisfying the Rankine-Hugoniot conditions, we establish a kinetic energy identity at the discrete level, then choose the source term of the internal energy equation to recover the total energy balance at the limit. More precisely speaking, we prove that in 1D, if we assume the L∞ and BV-stability and the convergence of the scheme, passing to the limit in the discrete kinetic and internal energy equations, we show that the limit of the sequence of solutions is a weak solution. Finally, we consider the computation of radial flows, governed by Euler equations in axisymetrical (2D) or spherical (3D) coordinates, and obtain similar results to the previous sections. In all chapters, we show numerical tests to illustrate for theoretical results. / We develop and analyse explicit in time schemes for the computation of compressible flows, based on staggered in space. Upwinding is performed equation by equation only with respect to the velocity. The pressure gradient is built as the transpose of the natural divergence. For the barotropic Euler equations, the velocity convection is built to obtain a discrete kinetic energy balance, with residual terms which are non-negative under a CFL condition. We then show that, in 1D, if a sequence of discrete solutions converges to some limit, then this limit is the weak entropy solution. For the full Euler equations, we choose to solve the internal energy balance since a discretization of the total energy is rather unnatural on staggered meshes. Under CFL-like conditions, the density and internal energy are kept positive, and the total energy cannot grow. To obtain correct weak solutions with shocks satisfying the Rankine-Hugoniot conditions, we establish a kinetic energy identity at the discrete level, then choose the source term of the internal energy equation to recover the total energy balance at the limit. More precisely speaking, we prove that in 1D, if we assume the L∞ and BV-stability and the convergence of the scheme, passing to the limit in the discrete kinetic and internal energy equations, we show that the limit of the sequence of solutions is a weak solution. Finally, we consider the computation of radial flows, governed by Euler equations in axisymetrical (2D) or spherical (3D) coordinates, and obtain similar results to the previous sections. In all chapters, we show numerical tests to illustrate for theoretical results.
3

A FILTER-FORCING TURBULENCE MODEL FOR LARGE EDDY SIMULATION INCORPORATING THE COMPRESSIBLE "POOR MAN'S" NAVIER--STOKES EQUATIONS

Strodtbeck, Joshua 01 January 2012 (has links)
A new approach to large-eddy simulation (LES) based on the use of explicit spatial filtering combined with backscatter forcing is presented. The forcing uses a discrete dynamical system (DDS) called the compressible ``poor man's'' Navier--Stokes (CPMNS) equations. This DDS is derived from the governing equations and is shown to exhibit good spectral and dynamical properties for use in a turbulence model. An overview and critique of existing turbulence theory and turbulence models is given. A comprehensive theoretical case is presented arguing that traditional LES equations contain unresolved scales in terms generally thought to be resolved, and that this can only be solved with explicit filtering. The CPMNS equations are then incorporated into a simple forcing in the OVERFLOW compressible flow code, and tests are done on homogeneous, isotropic, decaying turbulence, a Mach 3 compression ramp, and a Mach 0.8 open cavity. The numerical results validate the general filter-forcing approach, although they also reveal inadequacies in OVERFLOW and that the current approach is likely too simple to be universally applicable. Two new proposals for constructing better forcing models are presented at the end of the work.
4

A sharp interface Cartesian grid hydrocode

Sambasivan, Shiv Kumar 01 May 2010 (has links)
Dynamic response of materials to high-speed and high-intensity loading conditions is important in several applications including high-speed flows with droplets, bubbles and particles, and hyper-velocity impact and penetration processes. In such high-pressure physics problems, simulations encounter challenges associated with the treatment of material interfaces, particularly when strong nonlinear waves like shock and detonation waves impinge upon them. To simulate such complicated interfacial dynamics problems, a fixed Cartesian grid approach in conjunction with levelset interface tracking is attractive. In this regard, a sharp interface Cartesian grid-based, Ghost Fluid Method (GFM) is developed for resolving embedded fluid, elasto-plastic solid and rigid (solid) objects in hyper-velocity impact and high-intensity shock loaded environment. The embedded boundaries are tracked and represented by virtue of the level set interface tracking technique. The evolving multi-material interface and the flow are coupled by meticulously enforcing the boundary conditions and jump relations at the interface. In addition, a tree-based Local Mesh Refinement scheme is employed to efficiently resolve the desired physics. The framework developed is generic and is applicable to interfaces separating a wide range of materials and for a broad spectrum of speeds of interaction (O(km/s)). The wide repertoire of problems solved in this work demonstrates the flexibility, stability and robustness of the method in accurately capturing the dynamics of the embedded interface. Shocks interacting with large ensembles of particles are also computed.
5

A Low Dissipative Relaxation Scheme For Hyperbolic Consevation Laws

Kaushik, K N 01 1900 (has links) (PDF)
No description available.
6

Simulation of 2-D Compressible Flows on a Moving Curvilinear Mesh with an Implicit-Explicit Runge-Kutta Method

AbuAlSaud, Moataz 07 1900 (has links)
The purpose of this thesis is to solve unsteady two-dimensional compressible Navier-Stokes equations for a moving mesh using implicit explicit (IMEX) Runge- Kutta scheme. The moving mesh is implemented in the equations using Arbitrary Lagrangian Eulerian (ALE) formulation. The inviscid part of the equation is explicitly solved using second-order Godunov method, whereas the viscous part is calculated implicitly. We simulate subsonic compressible flow over static NACA-0012 airfoil at different angle of attacks. Finally, the moving mesh is examined via oscillating the airfoil between angle of attack = 0 and = 20 harmonically. It is observed that the numerical solution matches the experimental and numerical results in the literature to within 20%.
7

Modélisation et simulation de la dispersion de fluide en milieu fortement hétérogène. / Modeling and Numerical Simulation of Fluid Dispersion in Strongly Heterogeneous Media

Hank, Sarah 16 November 2012 (has links)
Ces travaux portent sur la modélisation et la simulation numérique de la dispersion de matériaux nocifs (pulvérisations liquides ou gazeuses) en milieu urbain ou naturel (attentat ou explosion accidentelle survenant en zone peuplée, fuites de produits toxiques gazeux ou liquides, éclatement de réservoir..). Afin de prédire ces risques un outils de simulation tridimensionnel a été développé. Celui-ci est basé sur un modèle de milieu hétérogène afin de traiter des phénomènes dont la durée et les distances associées peuvent être très grandes. La topographie des milieux étudiées est prise en compte grâce à des données numériques d'´elévation ainsi que les conditions météo permettant l'utilisation de profils de température et de vent complexes. Les transferts de chaleur et de masse sont considérés, notamment au niveau des obstacles. Un schéma numérique d'ordre élevé en temps et en espace est utilisé pour calculer les concentrations massiques de polluants. Par ailleurs, un modèle d'écoulement gaz-particule a été développé et implémenté dans le code de calcul. L'instabilité d'une couche de fluide soumise à un important gradient de pression est également étudiée, ceci afin de mieux comprendre et de caractériser les conditions initiales à utiliser pour ce type d'écoulement, impliquant des couches de particules. / This work deals with the modeling and the numerical simulation of the dispersion of toxic cloud of dropplets or gas in uneven geometry such as urban environment, industrial plants and hilly environment. Examples of phenomena under study are the dispersion of chemical products from damaged vessels, gas diffusion in an urban environment under explosion conditions, shock wave propagation in urban environment etc. A 3D simulation code has been developed in this aim. To simplify the consideration of complex geometries, a heterogeneous discrete formulation has been developed. When dealing with large scale domains, such as hilly natural environment, the topography is reconstructed with the help of numerical elevation data. Meteorological conditions are also considered, concerning temperature and wind velocity profiles. Heat and mass transfers on subscale objects, such as buildings are studied. A high order numerical scheme in space and time is used to compute mass concentration of pollutant. A two-phase model for dilute gas-particles flow has been developed and implemented in the 3D simulation code. The instability of a fluid layer appearing under high pressure gradient is also studied. This analysis allows us a better understanding of initial conditions for similar problems involving particles layer.
8

Numerical simulations of the shock wave-boundary layer interactions / Simulations numériques de l’interaction onde de choc couche limite

Ben Hassan Saïdi, Ismaïl 04 November 2019 (has links)
Les situations dans lesquelles une onde de choc interagit avec une couche limite sont nombreuses dans les industries aéronautiques et spatiales. Sous certaines conditions (nombre de Mach élevé, grand angle de choc…), ces interactions entrainent un décollement de la couche limite. Des études antérieures ont montré que la zone de recirculation et le choc réfléchi sont tous deux soumis à un mouvement d'oscillation longitudinale à basse fréquence connu sous le nom d’instabilité de l’interaction onde de choc / couche limite (IOCCL). Ce phénomène appelé soumet les structures à des chargement oscillants à basse fréquence qui peuvent endommager les structures.L’objectif du travail de thèse est de réaliser des simulations instationnaires de l’IOCCL afin de contribuer à une meilleure compréhension de l’instabilité de l’IOCCL et des mécanismes physiques sous-jacents.Pour effectuer cette étude, une approche numérique originale est utilisée. Un schéma « One step » volume fini qui couple l’espace et le temps, repose sur une discrétisation des flux convectifs par le schéma OSMP développé jusqu’à l’ordre 7 en temps et en espace. Les flux visqueux sont discrétisés en utilisant un schéma aux différences finies centré standard. Une contrainte de préservation de la monotonie (MP) est utilisée pour la capture de choc. La validation de cette approche démontre sa capacité à calculer les écoulements turbulents et la grande efficacité de la procédure MP pour capturer les ondes de choc sans dégrader la solution pour un surcoût négligeable. Il est également montré que l’ordre le plus élevé du schéma OSMP testé représente le meilleur compromis précision / temps de calcul. De plus un ordre de discrétisation des flux visqueux supérieur à 2 semble avoir une influence négligeable sur la solution pour les nombres de Reynolds relativement élevés considérés.En simulant un cas d’IOCCL 3D avec une couche limite incidente laminaire, l’influence des structures turbulentes de la couche limite sur l’instabilité de l’IOCCL est supprimée. Dans ce cas, l’unique cause d’IOCCL suspectée est liée à la dynamique de la zone de recirculation. Les résultats montrent que seul le choc de rattachement oscille aux fréquences caractéristiques de la respiration basse fréquence du bulbe de recirculation. Le point de séparation ainsi que le choc réfléchi ont une position fixe. Cela montre que dans cette configuration, l’instabilité de l’IOCCL n’a pas été reproduite.Afin de reproduire l’instabilité de l’IOCCL, la simulation de l’interaction entre une onde de choc et une couche limite turbulente est réalisée. Une méthode de turbulence synthétique (Synthetic Eddy Method - SEM) est développée et utilisée à l’entrée du domaine de calcul pour initier une couche limite turbulente à moindre coût. L’analyse des résultats est effectuée en utilisant notamment la méthode snapshot-POD (Proper Orthogonal Decomposition). Pour cette simulation, l’instabilité de l’IOCCL a été reproduite. Les résultats suggèrent que la dynamique du bulbe de recirculation est dominée par une respiration à moyenne fréquence. Ces cycles successifs de remplissage / vidange de la zone séparée sont irréguliers dans le temps avec une taille maximale du bulbe de recirculation variant d’un cycle à l’autre. Ce comportement du bulbe de recirculation traduit une modulation basse fréquence des amplitudes des oscillations des points de séparation et de recollement et donc une respiration basse fréquence de la zone séparée. Ces résultats suggèrent que l’instabilité de l’IOCCL est liée à cette dynamique basse fréquence du bulbe de recirculation, les oscillations du pied du choc réfléchi étant en phase avec le point de séparation. / Situations where an incident shock wave impinges upon a boundary layer are common in the aeronautical and spatial industries. Under certain circumstances (High Mach number, large shock angle...), the interaction between an incident shock wave and a boundary layer may create an unsteady separation bubble. This bubble, as well as the subsequent reflected shock wave, are known to oscillate in a low-frequency streamwise motion. This phenomenon, called the unsteadiness of the shock wave boundary layer interaction (SWBLI), subjects structures to oscillating loads that can lead to damages for the solid structure integrity.The aim of the present work is the unsteady numerical simulation of (SWBLI) in order to contribute to a better understanding of the SWBLI unsteadiness and the physical mechanism causing these low frequency oscillations of the interaction zone.To perform this study, an original numerical approach is used. The one step Finite Volume approach relies on the discretization of the convective fluxes of the Navier Stokes equations using the OSMP scheme developed up to the 7-th order both in space and time, the viscous fluxes being discretized using a standard centered Finite-Difference scheme. A Monotonicity-Preserving (MP) constraint is employed as a shock capturing procedure. The validation of this approach demonstrates the correct accuracy of the OSMP scheme to predict turbulent features and the great efficiency of the MP procedure to capture discontinuities without spoiling the solution and with an almost negligible additional cost. It is also shown that the use of the highest order tested of the OSMP scheme is relevant in term of simulation time and accuracy compromise. Moreover, an order of accuracy higher than 2-nd order for approximating the diffusive fluxes seems to have a negligible influence on the solution for such relatively high Reynolds numbers.By simulating the 3D unsteady interaction between a laminar boundary layer and an incident shock wave, we suppress the suspected influence of the large turbulent structures of the boundary layer on the SWBLI unsteadiness, the only remaining suspected cause of unsteadiness being the dynamics of the separation bubble. Results show that only the reattachment point oscillates at low frequencies characteristic of the breathing of the separation bubble. The separation point of the recirculation bubble and the foot of the reflected shock wave have a fixed location along the flat plate with respect to time. It shows that, in this configuration, the SWBLI unsteadiness is not observed.In order to reproduce and analyse the SWBLI unsteadiness, the simulation of a shock wave turbulent boundary layer interaction (SWTBLI) is performed. A Synthetic Eddy Method (SEM), adapted to compressible flows, has been developed and used at the inlet of the simulation domain for initiating the turbulent boundary layer without prohibitive additional computational costs. Analyses of the results are performed using, among others, the snapshot Proper Orthogonal Decomposition (POD) technique. For this simulation, the SWBLI unsteadiness has been observed. Results suggest that the dominant flapping mode of the recirculation bubble occurs at medium frequency. These cycles of successive enlargement and shrinkage of the separated zone are shown to be irregular in time, the maximum size of the recirculation bubble being submitted to discrepancies between successive cycles. This behaviour of the separation bubble is responsible for a low frequency temporal modulation of the amplitude of the separation and reattachment point motions and thus for the low frequency breathing of the separation bubble. These results tend to suggest that the SWBLI unsteadiness is related to this low frequency dynamics of the recirculation bubble; the oscillations of the reflected shocks foot being in phase with the motion of the separation point.
9

Numerical methods for all-speed flows in fluid-dynamics and non-linear elasticity / Méthodes numériques pour des écoulements multi-régimes en fluidodynamique et élasticité non-linéaire

Abbate, Emanuela 19 December 2018 (has links)
Dans cette thèse on s’intéresse à la simulation numérique d’écoulements des matériaux compressibles, voir fluides et solides élastiques. Les matériaux considérés sont décrits avec un modèle monolithique eulérian, fermé avec une loi d’état hyperélastique qui considère les différents comportements des matériaux. On propose un nouveau schéma de relaxation qui résout les écoulements compressibles dans des différents régimes, avec des nombres de Mach très petits jusqu’à l’ordre 1. Le schéma a une formulation générale qui est la même pour tous le matériaux considérés, parce que il ne dépend pas directement de la loi d’état. Il se base sur une discrétisation complétement implicite, facile à implémenter grâce à la linéarité de l’opérateur de transport du système de relaxation. La discrétisation en espace est donnée par la combinaison de flux upwind et centrés, pour retrouver la correcte viscosité numérique dans les différents régimes. L’utilisation de mailles cartésiennes pour les cas 2D s’adapte bien à une parallélisation massive, qui permet de réduire drastiquement le temps de calcul. De plus, le schéma a été adapté pour la résolution sur des mailles quadtree, pour implémenter l’adaptativité de la maille avec des critères entropiques. La dernière partie de la thèse concerne la simulation numérique d’écoulements multi-matériaux. On a proposé une nouvelle méthode d’interface “sharp”, en dérivant les conditions d’équilibre en implicite. L’objectif est la résolution d’interfaces physiques dans des régimes faiblement compressibles et avec un nombre de Mach faible, donc les conditions multi-matériaux sont couplées au schéma implicite de relaxation. / In this thesis we are concerned with the numerical simulation of compressible materials flows, including gases, liquids and elastic solids. These materials are described by a monolithic Eulerian model of conservation laws, closed by an hyperelastic state law that includes the different behaviours of the considered materials. A novel implicit relaxation scheme to solve compressible flows at all speeds is proposed, with Mach numbers ranging from very small to the order of unity. The scheme is general and has the same formulation for all the considered materials, since a direct dependence on the state law is avoided via the relaxation. It is based on a fully implicit time discretization, easily implemented thanks to the linearity of the transport operator in the relaxation system. The spatial discretization is obtained by a combination of upwind and centered schemes in order to recover the correct numerical viscosity in different Mach regimes. The scheme is validated with one and two dimensional simulations of fluid flows and of deformations of compressible solids. We exploit the domain discretization through Cartesian grids, allowing for massively parallel computations (HPC) that drastically reduce the computational times on 2D test cases. Moreover, the scheme is adapted to the resolution on adaptive grids based on quadtrees, implementing adaptive mesh refinement techinques. The last part of the thesis is devoted to the numerical simulation of heterogeneous multi-material flows. A novel sharp interface method is proposed, with the derivation of implicit equilibrium conditions. The aim of the implicit framework is the solution of weakly compressible and low Mach flows, thus the proposed multi-material conditions are coupled with the implicit relaxation scheme that is solved in the bulk of the flow.
10

Construction de modèles réduits numériques pour les écoulements compressibles linéarisés

Serre, Gilles 27 January 2012 (has links)
Dans les centrales nucléaires et thermiques, certaines installations sont sujettes à des couplages acousto-mécaniques pouvant nuire fortement à leur bon fonctionnement. La compréhension et la prédiction de ces couplages multi-physiques nécessitent le développement de modèles numériques de très grande précision. Ces modèles sont si coûteux à résoudre qu’il n’est pas envisageable de les utiliser dans des boucles de contrôle ou encore d’optimisation paramétrique. Dans ce manuscrit de thèse, le but est d’exploiter un nombre limité de calculs coûteux pour construire un modèle numérique qui soit de très faible dimension. Ces modèles numériques réduits doivent être capables, en temps réel, de reproduire ces calculs haute-fidélité mais aussi d’extrapoler ces résultats à d’autres points de fonctionnement plus ou moins proches. L’évolution dé petites perturbations compressibles au sein d’un écoulement complexe moyenné est modélisée à partir des équations d’Euler linéarisées dont la nature hyperbolique complique l’application des méthodes de réduction classiques. Les principales problématiques théoriques et numériques qui émergent lors de la construction du système réduit par méthode de projection sont alors exposées. En particulier, les problèmes fondamentaux de la préservation de la stabilité et du contrôle de l’énergie des systèmes réduits sont largement développés et une nouvelle méthode de stabilisation est proposée. Leur sensibilité paramétrique est aussi discutée. Les modèles réduits stables sont ensuite intégrées dans un code de calcul industriel pour prendre en compte des géométries complexes. De plus, la présence de solides dont les parois peuvent être fixes ou mobiles est abordée. En particulier, les petits déplacements de paroi sont modélisés avec une loi de transpiration. Cette condition aux limites est intégrée dans le formalisme du contrôle de façon à lever la difficulté induite par sa non homogénéité. Finalement, les modèles réduits sont exploités pour prédire en temps réel la réponse des systèmes à une loi de contrôle arbitraire. Par exemple, la fréquence et l’amplitude du chargement peuvent varier. Le code de calcul réduit ainsi développé a pour principale vocation de rendre possible des expertises aéroélastiques à faible coût. / In nuclear and thermal power stations, some installations produce acoustics/mechanics coupling which may cause important damage and bad operating performances. Prediction and understanding of these physical phenomena need the development of high-fidelity numerical models which are prohibitive to solve. Therefore, these models cannot be used for control or even parametric optimization applications. In this work, the goal is to use some high-fidelity solutions for building reduced-order models which are able to calculate again these solutions but in real-time, and also to predict solutions for other close configurations. Modelling of compressible disturbances in a complex mean flow is given by hyperbolic linearized Euler equations which create some difficulties to perform classical reduction methods. Theoretical and numerical problems are then introduced when a projection method is applied. In particular, the conservation of stability and the control of energy of reduced-order models are studied and a new stabilization procedure is proposed. Parametric sensitivity is also discussed. Afterwards, stable reduced-order models are developed in an industrial code to consider complex geometries. Furthermore, modelling of solids with fixed or vibrating walls are taken into account. Particularly, small vibrations are modelled thanks to a transpiration law. This boundary condition is implemented in the framework of linear control theory to apply reduction methods. Finally, reduced-order models are tested to predict solutions in real time. For instance, frequency and amplitude of the loading can change. The developed reduced order model should be used for aeroelastic industrial problems with more realistic costs.

Page generated in 0.0518 seconds