Spelling suggestions: "subject:"deegvolume theory"" "subject:"bloedvolume theory""
1 |
Simulação atomistica como ferramenta para investigação dos mecanismos de difusão : coeficientes de autodifusão de gases simples em matriz polimerica / Atomistic simulation for difusion mechanisms investigation : self diffusion coeficient of simples gases in polymeric matrixTrochmann, Jose Luiz Lino 16 August 2006 (has links)
Orientador: Sergio Persio Ravagnani / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica / Made available in DSpace on 2018-08-07T03:49:14Z (GMT). No. of bitstreams: 1
Trochmann_JoseLuizLino_D.pdf: 1070584 bytes, checksum: 3407aee7ad6d88d9de0a1326aaf3d29d (MD5)
Previous issue date: 2006 / Resumo: Neste trabalho de tese foi realizado um estudo do potencial de predição de propriedades de transporte em matrizes poliméricas de poli - imidas, utilizando a simulação dinâmica molecular de gases simples como Oxigênio, Nitrogênio e Dióxido de Carbono. A propriedade de transporte de interesse prático, a permeabilidade de uma membrana polimérica a um dado penetrante, envolve a determinação de propriedades de ordem cinética e termodinâmica, respectivamente a determinação do coeficiente de difusão e da solubilidade deste penetrante na matriz polimérica. Atenção especial foi conferida à propriedade cinética, pela predição do coeficiente de autodifusão dos penetrantes. Num procedimento experimental clássico é de vital importância para significância das conclusões derivadas dos experimentos, o uso de amostras de membranas poliméricas adequadamente preparadas quanto à composição química, estrutura física e morfologia. Analogamente, quando se utiliza a simulação molecular para a predição de propriedades, tais como o coeficiente de autodifusão, também é de fundamental relevância para os resultados obtidos, a qualidade dos modelos moleculares das matrizes poliméricas, que serão usados como base. Assim para a preparação de modelos moleculares com o adequado empacotamento, um procedimento para a obtenção de modelos bem equilibrados foi desenvolvido neste trabalho. Os modelos moleculares desenvolvidos foram usados para a obtenção dos valores de massa específica em função da temperatura, e comparados aos valores experimentais disponíveis e quando necessário a, valores preditos por meio da expressão de massa específica em função da temperatura, acima e abaixo da temperatura de transição. A capacidade do modelo molecular desenvolvido em predizer a massa especifica e temperatura de transição vítrea foi usada como critério para a validação da adequação do empacotamento proposto para o referido modelo molecular da matriz polimérica. Os modelos validados de empacotamento, células amorfas, foram utilizados para o cálculo do coeficiente de autodifusão dos gases acima mencionados, através do da simulação dinâmica molecular. A comparação dos coeficientes de autodifusão obtidos das poli-imidas aromáticas e éster imidas, BAAF, 6FDA-ODA, PMDA-ODA e BA-20DA, para os gases O2, N2 e CO2, com os dados experimentais, permitiu concluir a adequação das células amorfas e do esquema de simulação dinâmica molecular para a predição do coeficiente de autodifusão.. A versão preditiva de Vrentas e Duda, baseada na teoria do volume livre, foi utilizada para a predição dos coeficientes de autodifusão da água e do etanol para as poli-imidas acima. , Estes valores, quando comparados com os valores obtidos através da simulação dinâmica molecular mostram a validade de ambas as teorias para a predição da cinética de difusão de penetrantes em matrizes poliméricas complexas / Abstract: In this thesis a study of the predictive potential of the molecular dynamic simulation was performed for transport properties of light gases in polyimide matrix. From de practical point of view permeability is the property of most interest, and involves kinetics as well as thermodynamics properties, diffusion coefficient and solubility of the penetrants molecule in the bulk polymeric matrix, this work will be focus in the former. As important as is in as experimental work, a well prepared polymeric membrane is essential for the significance of the draw conclusions. Therefore a special attention was take in the preparation of the bulk molecular polymeric model, the so called amorphous cell, in order to obtain well-equilibrated molecular packing models for the polyimide matrixes. The amorphous cells were prepared throughout thermodynamic transforms, using one or more of the statistical ensembles and cell specific volume obtained as a function of temperature, this data was compared against the experimental data available, and when necessary to data obtained via predictive methods. The molecular packing model ability to predict the glass transition temperature was used as criteria to validate de amorphous cell, to be used in the molecular dynamic' simulations allow the matrix to be locally flexible and coupled to the classic molecular dynamics simulation. The resulting self diffusion coefficients for the polyimide, BAAF, 6FDA-ODA, PMDAODA and BA-20DA for the gases O2, N2 e CO2 were compared to the experimental data. The lack of quality experimental diffusion data available for polyimide membranes for larger penetrants as water and ethanol, showed up as a good opportunity to assess the predictive capability of the molecular dynamic simulation for self diffusion coefficients, considering the relevant technological relevance of polyimide membranes for pervaporation process. The data of self diffusion coefficient produced by the predictive version of free-volume theory after Vrentas and Duda, was compared with the data produced via coupled molecular dynamic simulation for the water and ethanol penetrants, showing the relevance of both theories for the prediction of penetrants kinetic in complex polymeric matrixes / Doutorado / Ciencia e Tecnologia de Materiais / Doutor em Engenharia Química
|
2 |
Rational design of plastic packaging for alcoholic beverages / Conception raisonnée d'emballages en plastique pour les boissons alcooliséesZhu, Yan 17 July 2019 (has links)
La perception des emballages alimentaires est passée d’utile à source majeure de contaminants dans les aliments et menace pour l’environnement. La substitution du verre par des con-tenants en plastiques recyclés ou biosourcés réduit l’impact environnemental des boissons embouteillées. La thèse a développé de nouveaux outils de simulation 3D et d’optimisation pour accélérer le prototypage des emballages éco-efficaces pour les boissons alcoolisées. La durée de conservation des boissons, la sécurité sanitaire des matériaux plastiques recyclés, les contraintes mécaniques, et la quantité de déchets sont considérées comme un seul problème d'optimisation multicritères. Les nouvelles bouteilles sont générées virtuellement et itérativement en trois étapes comprenant : i) une [E]valuation multiéchelle des transferts de masse couplés ; ii) une étape de [D]écision validant les contraintes techniques (forme, capacité, poids) et réglementaires (durée de conservation, migrations); iii) une étape globale de ré[S]olution recherchant des solutions de Pareto acceptables. La capacité de prédire la durée de vie des liqueurs dans des conditions réelles a été testée avec succès sur environ 500 miniatures en PET (polyéthylène téréphtalate) sur plusieurs mois. L’ensemble de l’approche a été conçu pour gérer tout transfert de matière couplé (perméation, sorption, migration). La sorption mutuelle est prise en compte via une formulation polynaire de Flory-Huggins. Une formulation gros grain de la théorie des volumes libres de Vrentas et Duda a été développée pour prédire les propriétés de diffusion dans les polymères vitreux de l’eau et des solutés organiques dans des polymères arbitraires (polyesters, polyamides, polyvinyles, polyoléfines). 409 diffusivités issues de la littérature ou mesurées ont été utilisée pour validation. La contribution de la relaxation du PET vitreux a été analysée par sorption différentielle (binaire et ternaire) de 25 à 50 °C. Une partie du code source sera partagé afin d'encourager l'intégration de davantage de paramètres affectant la durée de conservation des boissons et des produits alimentaires (cinétique d'oxydation, piégeage d'arômes). / The view of plastic food packaging turned from useful to a major source of contaminants in food and an environmental threat. Substituting glass by recycled or biosourced plastic containers reduces environmental impacts for bottled beverages. The thesis developed a 3D computational and optimization framework to accelerate the prototyping of eco-efficient packaging for alcoholic beverages. Shelf-life, food safety, mechanical constraints, and packaging wastes are considered into a single multicriteria optimization problem. New bottles are virtually generated within an iterative three steps process involving: i) a multiresolution [E]valuation of coupled mass transfer; ii) a [D]ecision step validating technical (shape, capacity, weight) and regulatory (shelf-life, migrations) constraints; iii) a global [Solving] step seeking acceptable Pareto solutions. The capacity to predict shelf-life of liquors in real conditions was tested successfully on ca. 500 hundred bottle min iatures in PET (polyethylene terephthalate) over several months. The entire approach has been designed to manage any coupled mass transfer (permeation, sorption, migration). Mutual sorption is considered via polynary Flory-Huggins formulation. A blob formulation of the free-volume theory of Vrentas and Duda was developed to predict the diffusion properties in glassy polymers of water and organic solutes in arbitrary polymers (polyesters, polyamides, polyvinyls, polyolefins). The validation set included 433 experimental diffusivities from literature and measured in this work. The contribution of polymer relaxation in glassy PET was analyzed in binary and ternary differential sorption using a cosorption microbalance from 25 to 50°C. Part of the framework will be released as an open-source project to encourage the integration of more factors affecting the shelf-life of beverages and food products (oxidation kinetics, aroma scalping).
|
Page generated in 0.0602 seconds