• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computational analysis of low speed axial flow rotors

Brown, Kieron David January 1998 (has links)
No description available.
2

Investigation Of Rotor Wake Interactions In Helicopters Using 3d Unsteady Free Vortex Wake Methodology

Yemenici, Oznur 01 December 2009 (has links) (PDF)
This thesis focuses on developing and examining the capabilities of a new in-house aerodynamic analysis tool, AeroSIM+, and investigating rotor-rotor aerodynamic interactions for two helicopters, one behind the other in forward flight. AeroSIM+ is a 3-D unsteady vortex panel method potential flow solver based on a free vortex wake methodology. Validation of the results with the experimental data is performed using the Caradonna-Tung hovering rotor test case. AeroSIM+ code is improved for forward flight conditions so that, the blades are allowed to move according to the rotor dynamics. In the simulations, blade airload prediction is seen to be sensitive to changes in vortex core size. Blade Vortex Interaction (BVI) locations differ depending on the relative position of the rear rotor with respect to the front rotor as well as on the forward flight speed. It was observed that the performance characteristics of the rear rotor alter depending on the relative positions of the rotors within the asymmetric wake flow field. The results of this thesis study such as the computed forces and moments on each rotor and the frequency characteristics of these loads can be also used in helicopter dynamics simulators.
3

Advanced methods for dynamic aeroelastic analysis of rotors

Reveles, Nicolas 22 May 2014 (has links)
Simulations play an integral role in the understanding and development of rotor- craft aeromechanics. Computational Fluid Dynamics coupled with Computational Structural Dynamics (CFD/CSD) offers an excellent approach to analyzing rotors. These methods have been traditionally “loosely-coupled” where data are exchanged periodically, motion is prescribed for CFD, and the updated loads have a static component for CSD. Loosely-coupled CFD/CSD assumes the solution to be periodic, which may not be true for some simulations. “Tightly-coupled” CFD/CSD, where loads and motion are exchanged at each time step, does not make this periodic assumption and opens up new avenues of simulation to research. A major drawback to tightly-coupled CFD/CSD is an increase in computational cost. Different approaches are explored to reduce this cost as well as examine numerical implications in solutions from tightly and loosely-coupled CFD/CSD. A trim methodology optimized for tightly-coupled simulations is developed and found to bring trim costs within parity of loosely-coupled CFD/CSD simulations. Aerodynamic loading is found to be nearly similar for fixed controls. However, the lead-lag blade motion is determined to contain a harmonic in the tightly-coupled analysis that is not an integer multiple of the rotor speed. A hybrid CFD/CSD methodology employing the use of a free-wake code to model the far-field effects of the rotor wake is developed to aid in computational cost reduction. Investigation of this approach reveals that computational costs may be reduced while preserving solution accuracy. This work’s contributions to the community include the development of a trim algorithm appropriate for use in tightly-coupled CFD/CSD simulations along with a detailed examination of the physics predicted by loose and tight coupling for quasi-steady level flight conditions. The influence of the wake in such cases is directly examined using a modular hybrid coupling to a free-wake code that is capable of reduced cost computations.
4

Enhancement of aeroelastic rotor airload prediction methods

Abras, Jennifer N. 02 April 2009 (has links)
The accurate prediction of rotor air loads is a current topic of interest in the rotorcraft community. The complex nature of this loading makes this problem especially difficult. Some of the issues that must be considered include transonic effects on the advancing blade, dynamic stall effects on the retreating blade, and wake vortex interactions with the blades, fuselage, and other components. There are numerous codes to perform these predictions, both aerodynamic and structural, but until recently each code has refined either the structural or aerodynamic aspect of the analysis without serious consideration to the other, using only simplified modules to represent the physics. More recent research has concentrated on combining high fidelity CFD and CSD computations to be able to use the most accurate codes available to compute both the structural and the aerodynamic aspects. The objective of the research is to both evaluate and extend a range of prediction methods comparing both accuracy and computational expense. This range covers many methods where the highest accuracy method shown is a delta loads coupling between an unstructured CFD code and a comprehensive code, and the lowest accuracy, but highest efficiency, is found through a free wake and comprehensive code coupling using simplified 2D aerodynamics. From here methods to improve the efficiency and accuracy of the CFD code will be considered through implementation of steady-state grid adaptation, a time accurate low Mach number preconditioning method, and the use of fully articulated rigid blade motion. The exact formulation of the 2D aerodynamic model used in the CSD code will be evaluated, as will efficiency improvements to the free wake code. The advantages of the free-wake code will be tested against a dynamic inflow model. A comparison of all of these methods will show the advantages and consequences of each combination, including the types of physics that each method is able to, or not able to, capture through examination of how closely each method matches flight test data.
5

A physics based investigation of gurney flaps for enhancement of rotorcraft flight characteristics

Min, Byung-Young 26 March 2010 (has links)
Helicopters are versatile vehicles that can vertically take off and land, hover, and perform maneuver at very low forward speeds. These characteristics make them unique for a number of civilian and military applications. However, the radial and azimuthal variation of dynamic pressure causes rotors to experience adverse phenomena such as transonic shocks and 3-D dynamic stall. Adverse interactions such as blade vortex interaction and rotor-airframe interaction may also occur. These phenomena contribute to noise and vibrations. Finally, in the event of an engine failure, rotorcraft tends to descend at high vertical velocities causing structural damage and loss of lives. A variety of techniques have been proposed for reducing the noise and vibrations. These techniques include on-board control (OBC) devices, individual blade control (IBC), and higher harmonic control (HHC). Addition of these devices adds to the weight, cost, and complexity of the rotor system, and reduces the reliability of operations. Simpler OBC concepts will greatly alleviate these drawbacks and enhance the operating envelope of vehicles. In this study, the use of Gurney flaps is explored as an OBC concept using a physics based approach. A three dimensional Navier-Stokes solver developed by the present investigator is coupled to an existing free wake model of the wake structure. The method is further enhanced for modeling of Blade-Vortex-Interactions (BVI). Loose coupling with an existing comprehensive structural dynamics analysis solver (DYMORE) is implemented for the purpose of rotor trim and modeling of aeroelastic effects. Results are presented for Gurney flaps as an OBC concept for improvements in autorotation, rotor vibration reduction, and BVI characteristics. As a representative rotor, the HART-II model rotor is used. It is found that the Gurney flap increases propulsive force in the driving region while the drag force is increased in the driven region. It is concluded that the deployable Gurney flap may improve autorotation characteristics if deployed only over the driving region. Although the net effect of the increased propulsive and drag force results in a faster descent rate when the trim state is maintained for identical thrust, it is found that permanently deployed Gurney flaps with fixed control settings may be useful in flare operations before landing by increasing thrust and lowering the descent rate. The potential of deployable Gurney flap is demonstrated for rotor vibration reduction. The 4P harmonic of the vertical vibratory load is reduced by 80% or more, while maintaining the trim state. The 4P and 8P harmonic loads are successfully suppressed simultaneously using individually controlled multi-segmented flaps. Finally, simulations aimed at BVI avoidance using deployable Gurney flaps are also presented.

Page generated in 0.0187 seconds