• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 8
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 74
  • 38
  • 27
  • 22
  • 15
  • 13
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Advanced data exchange for solid freeform fabrication /

Park, Seok-min, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 147-159). Available also in a digital version from Dissertation Abstracts.
22

Modeling, analysis and experimentation for building ice parts with supports using rapid freeze prototyping

Bryant, Frances Denise, January 2008 (has links) (PDF)
Thesis (Ph. D.)--Missouri University of Science and Technology, 2008. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed May 28, 2009) Includes bibliographical references (p. 91-93).
23

Densification and properties evolution of stainless steel alloys fabricated by three-dimensional printing

Kim, Yongha, January 2009 (has links) (PDF)
Thesis (M.S. in mechanical engineering)--Washington State University, August 2009. / Title from PDF title page (viewed on Sept. 16, 2009). "School of Engineering and Computer Science." Includes bibliographical references (p. 77-83).
24

A method for the design of unsymmetrical optical systems using freeform surfaces

Reshidko, Dmitry, Sasian, Jose 27 November 2017 (has links)
A systematic method for the design of unsymmetrical optical systems is described. Freeform optical surfaces are constructed by superposition of a conic segment and a polynomial, and successfully applied to design relatively fast wide field-of-view optical systems.
25

Miniature camera lens design with a freeform surface

Sasian, Jose, Yan, Yufeng 27 November 2017 (has links)
We present a miniature camera lens design method that uses a freeform surface based on the pedal curve to the ellipse in polynomial form. Two designs are presented and their benefits of optical performance and tolerance sensitivity are compared to designs with conventional aspheric surfaces. We also reverse a freeform design using even aspherical surfaces to show that the optimization solution of a freeform design cannot be reproduced by even aspherical surfaces.
26

Design, Fabrication and Metrology of Freeform Optical Elements

Zhou, Wenchen January 2020 (has links)
No description available.
27

Integration of Physically-based and Data-driven Approaches for Thermal Field Prediction in Additive Manufacturing

Li, Jingran January 2017 (has links)
A quantitative understanding of thermal field evolution is vital for quality control in additive manufacturing (AM). Because of the unknown material parameters, high computational costs, and imperfect understanding of the underlying science, physically-based approaches alone are insufficient for component-scale thermal field prediction. Here, I present a new framework that integrates physically-based and data-driven approaches with quasi in situ thermal imaging to address this problem. The framework consists of (i) thermal modeling using 3D finite element analysis (FEA), (ii) surrogate modeling using functional Gaussian process, and (iii) Bayesian calibration using the thermal imaging data. Based on heat transfer laws, I first investigate the transient thermal behavior during AM using 3D FEA. A functional Gaussian process-based surrogate model is then constructed to reduce the computational costs from the high-fidelity, physically-based model. I finally employ a Bayesian calibration method, which incorporates the surrogate model and thermal measurements, to enable layer-to-layer thermal field prediction across the whole component. A case study on fused deposition modeling is conducted for components with 7 to 16 layers. The cross-validation results show that the proposed framework allows for accurate and fast thermal field prediction for components with different process settings and geometric designs. / Master of Science / This paper aims to achieve the layer to layer temperature monitoring and consequently predict the temperature distribution for any new freeform geometry. An engineering statistical synergistic model is proposed to integrate the pure statistical methods and finite element modeling (FEM), which is physically meaningful as well as accurate for temperature prediction. Besides, this proposed synergistic model contains geometry information, which can be applied to any freeform geometry. This paper serves to enable a holistic cyber physical systems-based approach for the additive manufacturing (AM) not only restricted in fused deposition modeling (FDM) process but also can be extended to powder-based process like laser engineered net shaping (LENS) and selective laser sintering (SLS). This paper as well as the scheduled future works will make it affordable for customized AM including customized geometries and materials, which will greatly accelerate the transition from rapid prototyping to rapid manufacturing. This article demonstrates a first evaluation of engineering statistical synergistic model in AM technology, which gives a perspective on future researches about online quality monitoring and control of AM based data fusion principles.
28

Manufacturing of super-polished large aspheric/freeform optics

Kim, Dae Wook, Oh, Chang-jin, Lowman, Andrew, Smith, Greg A., Aftab, Maham, Burge, James H. 22 July 2016 (has links)
Several next generation astronomical telescopes or large optical systems utilize aspheric/freeform optics for creating a segmented optical system. Multiple mirrors can be combined to form a larger optical surface or used as a single surface to avoid obscurations. In this paper, we demonstrate a specific case of the Daniel K. Inouye Solar Telescope (DKIST). This optic is a 4.2 m in diameter off-axis primary mirror using ZERODUR thin substrate, and has been successfully completed in the Optical Engineering and Fabrication Facility (OEFF) at the University of Arizona, in 2016. As the telescope looks at the brightest object in the sky, our own Sun, the primary mirror surface quality meets extreme specifications covering a wide range of spatial frequency errors. In manufacturing the DKIST mirror, metrology systems have been studied, developed and applied to measure low-to-mid-to-high spatial frequency surface shape information in the 4.2 m super-polished optical surface. In this paper, measurements from these systems are converted to Power Spectral Density (PSD) plots and combined in the spatial frequency domain. Results cover 5 orders of magnitude in spatial frequencies and meet or exceed specifications for this large aspheric mirror. Precision manufacturing of the super-polished DKIST mirror enables a new level of solar science.
29

Automated freeform assembly of threaded fasteners

Dharmaraj, Karthick January 2015 (has links)
Over the past two decades, a major part of the manufacturing and assembly market has been driven by its customer requirements. Increasing customer demand for personalised products create the demand for smaller batch sizes, shorter production times, lower costs, and the flexibility to produce families of products - or different parts - with the same sets of equipment. Consequently, manufacturing companies have deployed various automation systems and production strategies to improve their resource efficiency and move towards right-first-time production. However, many of these automated systems, which are involved with robot-based, repeatable assembly automation, require component- specific fixtures for accurate positioning and extensive robot programming, to achieve flexibility in their production. Threaded fastening operations are widely used in assembly. In high-volume production, the fastening processes are commonly automated using jigs, fixtures, and semi-automated tools. This form of automation delivers reliable assembly results at the expense of flexibility and requires component variability to be adequately controlled. On the other hand, in low- volume, high- value manufacturing, fastening processes are typically carried out manually by skilled workers. This research is aimed at addressing the aforementioned issues by developing a freeform automated threaded fastener assembly system that uses 3D visual guidance. The proof-of-concept system developed focuses on picking up fasteners from clutter, identifying a hole feature in an imprecisely positioned target component and carry out torque-controlled fastening. This approach has achieved flexibility and adaptability without the use of dedicated fixtures and robot programming. This research also investigates and evaluates different 3D imaging technology to identify the suitable technology required for fastener assembly in a non-structured industrial environment. The proposed solution utilises the commercially available technologies to enhance the precision and speed of identification of components for assembly processes, thereby improving and validating the possibility of reliably implementing this solution for industrial applications. As a part of this research, a number of novel algorithms are developed to robustly identify assembly components located in a random environment by enhancing the existing methods and technologies within the domain of the fastening processes. A bolt identification algorithm was developed to identify bolts located in a random clutter by enhancing the existing surface-based matching algorithm. A novel hole feature identification algorithm was developed to detect threaded holes and identify its size and location in 3D. The developed bolt and feature identification algorithms are robust and has sub-millimetre accuracy required to perform successful fastener assembly in industrial conditions. In addition, the processing time required for these identification algorithms - to identify and localise bolts and hole features - is less than a second, thereby increasing the speed of fastener assembly.
30

Geometric algebra as applied to freeform motion design and improvement

Simpson, Leon January 2012 (has links)
Freeform curve design has existed in various forms for at least two millennia, and is important throughout computer-aided design and manufacture. With the increasing importance of animation and robotics, coupled with the increasing power of computers, there is now interest in freeform motion design, which, in part, extends techniques from curve design, as well as introducing some entirely distinct challenges. There are several approaches to freeform motion construction, and the first step in designing freeform motions is to choose a representation. Unlike for curves, there is no "standard" way of representing freeform motions, and the different tools available each have different properties. A motion can be viewed as a continuously-varying pose, where a pose is a position and an orientation. This immediately presents a problem; the dimensions of rotations and translations are different, and it is not clear how the two can be compared, such as to define distance along a motion. One solution is to treat the rotational and translational components of a motion separately, but this is inelegant and clumsy. The philosophy of this thesis is that a motion is not defined purely by rotations and translations, but that the body following a motion is a part of that motion. Specifically, the part of the body that is accounted for is its inertia tensor. The significance of the inertia tensor is that it allows the rotational and translational parts of a motion to be, in some sense, compared in a dimensionally- consistent way. Using the inertia tensor, this thesis finds the form of kinetic energy in <;1'4, and also discusses extensions of the concepts of arc length and curvature to the space of motions, allowing techniques from curve fairing to be applied to motion fairing. Two measures of motion fairness are constructed, and motion fairing is the process of minimizing the measure of a motion by adjusting degrees of freedom present in the motion's construction. This thesis uses the geometric algebra <;1'4 in the generation offreeform motions, and the fairing of such motions. <;1'4 is chosen for its particular elegance in representing rigid-body transforms, coupled with an equivalence relation between elements representing transforms more general than for ordinary homogeneous coordinates. The properties of the algebra germane to freeform motion design and improvement are given, and two distinct frameworks for freeform motion construction and modification are studied in detail.

Page generated in 0.0241 seconds