• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 8
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 75
  • 39
  • 28
  • 23
  • 15
  • 14
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Freeform Rammed Earth Shell Construction

Guo, Jing 19 September 2017 (has links)
No description available.
42

Thermal Forming Process for Precision Freeform Optical Mirrors and Micro Glass Optics

Chen, Yang 23 August 2010 (has links)
No description available.
43

Geometrically Adaptive Milling of Fan Blade Assembly Weld Fillets

Lin, Yu Pin 10 1900 (has links)
<p>Modern aeroengine design focuses on reducing overall weight and improving component service life. For fan blade assemblies, the blades and hub/shaft are attached by the most common dovetail (or fir tree) attachment design, which experiences fretting fatigue at the joint resulting in lower reliability and higher repair difficulty. A new joining design that connects blade /disk by welding and eliminates the attachment, has been implemented in military and commercial aeroengines. This joining design is most suitable for large diameter fan blades where single piece machining is impractical and time consuming. The joined blade requires post-process machining to remove excess weld material. However, because of varying assembly geometry, joints must be individually measured and tool paths consequently adjusted to match actual surface locations. The objective of this thesis is to develop an automated and geometrically adaptive post-process weld machining system.</p> <p>This thesis proposes a solution that integrates surface digitization, computer aided design (CAD) and computer aided manufacturing (CAM) systems, to accommodate the part-to-part variation issue. The integrated system includes precise laser digitizing, geometric modelling, tool path customizing, coordinate registration and CNC machining. The core algorithm was designed on the open and object-oriented C++ ACIS/HOOPS kernel. The customized tool paths are prepared based on the misalignment distance measured by laser digitizing, and a custom developed mathematical correction algorithm that can be implemented on a typical personal computer. At present, the machining process is designed for a three-axis machine tool. Suggested future works include implementation on a five-axis machine, and feed rate optimized tool paths.</p> / Master of Applied Science (MASc)
44

On harmonic and biharmonic Bezier surfaces

Monterde, J., Ugail, Hassan January 2004 (has links)
Yes
45

A pneumatic conveying powder delivery system for continuously heterogeneous material deposition in solid freeform fabrication

Fitzgerald, Shawn 02 December 2008 (has links)
Great improvements are continuously being made in the solid free form fabrication (SFF) industry in terms of processes and materials. Fully functional parts are being created directly with little, if any, finishing. Parts are being directly fabricated with engineering materials such as ceramics and metals. This thesis aims to facilitate a substantial advance in rapid prototyping capabilities, namely that of fabricating parts with continuously heterogeneous material compositions. Because SFF is an additive building process, building parts layer-by-layer or even point-by-point, adjusting material composition throughout the entire part, in all three dimensions, is feasible. The use of fine powders as its build material provides the potential for the Selective Laser Sintering (SLS), ThreeDimensional Printing (3DP), and Freeform Powder Molding (FPM) processes to be altered to create continuously heterogeneous material composition. The current roller distribution system needs to be replaced with a new means of delivering the powder that facilitates selective heterogeneous material compositions. This thesis explores a dense phase pneumatic conveying system that has the potential to deliver the powder in a controlled manner and allow for adjustment of material composition throughout the layer. / Master of Science
46

Combined Compression and Shear Structural Evaluation of Stiffened Panels Fabricated Using Electron Beam Freeform Fabrication

Nelson, Erik Walter 30 July 2008 (has links)
Unitized aircraft structures have the potential to be more efficient than current aircraft structures. The Electron Beam Freeform Fabrication (EBF3) process can be used to manufacture unitized aircraft structures. The structural efficiency of blade stiffened panels made with EBF3 was compared to panels made by integrally machining from thick plate. The panels were tested under two load cases in a combined compression-shear load test fixture. One load case tested the panels' responses to a higher compressive load than the shear load. The second load case tested the panels' responses to an equal compressive and shear load. Finite element analysis was performed to compare with the experimental results. The EBF3 panels failed at a 18.5% lower buckling load than the machined panels when loaded mostly in compression but at an almost two times higher buckling load than the machined panels when the shear matched the compressive load. The finite element analysis was in good agreement with the experimental results prior to buckling. The results demonstrate that the EBF3 process has the capabilities of manufacturing stiffened panels that behave similarly to machined panels prior to buckling. Once the EBF3 panels buckled, the buckled shape of the EBF3 panels was different from the machined panels, generally buckling in the opposite direction of what was observed with the machined panels. This was also expected based on the finite element analysis. The different post-buckling response between the two manufacturing techniques was attributed to the residual stress and associated distortion induced during the EBF3 manufacturing process. / Master of Science
47

Automated Loading and Unloading of the Stratasys FDM 1600 Rapid Prototyping System

Brockmeier, Oivind 28 March 2000 (has links)
Rapid prototyping systems have advanced significantly with respect to material capabilities, fabrication speed, and surface quality. However, build jobs are still manually activated one at a time. The result is non-productive machine time whenever an operator is not at hand to make a job changeover. A low-cost auxiliary system, named Continuous Layered Manufacturing (CLM), has been developed to automatically load and unload the FDM 1600 rapid prototyping system (Stratasys, Inc.). The modifications made to the FDM 1600 system are minimal. The door to the FDM 1600 build chamber is removed, and the .SML build files that are used to drive the FDM 1600 are modified at both ends to facilitate synchronized operation between the two systems. The CLM system is capable of running three consecutive build jobs without operator intervention. As long as an operator removes finished build jobs, and adds new build trays before at most every three build jobs, the FDM can operate near indefinitely. The impact of the CLM system on the productivity of the FDM 1600 rapid prototyping system is demonstrated by the expected reduction from the customary eight weeks down to a future three and one-half weeks required to complete the typical forty build jobs during a semester in the course ME 4644 Introduction to Rapid Prototyping at Virginia Tech. / Master of Science
48

Evaluation of Negative Stiffness Elements for Enhanced Material Damping Capacity

Kashdan, Lia Beatrix 29 October 2010 (has links)
Constrained negative stiffness elements in volume concentrations (1% to 2%) embedded within viscoelastic materials have been shown to provide greater energy absorption than conventional materials [Lakes et al., Nature (London) 410, 565–567 (2001)]. This class of composite materials, called meta-materials, could be utilized in a variety of applications including noise reduction, anechoic coatings and transducer backings. The mechanism underlying the meta-material's behavior relies on the ability of the negative stiffness element to locally deform the viscoelastic material, dissipating energy in the process. The work presented here focuses specifically on the design of the negative stiffness elements, which take the form of buckled beams. By constraining the beam in an unstable, S-shaped configuration, the strain energy density of the beam will be at a maximum and the beam will accordingly display negative stiffness. To date, physical realization of these structures has been limited due to geometries that are difficult to construct and refine with conventional manufacturing materials and methods. By utilizing the geometric freedoms allowed by the Selective Laser Sintering (SLS) machines, these structures can be built and tuned for specific dynamic properties. The objective of this research was to investigate the dynamic behavior of SLS-constructed meso-scale negative stiffness elements with the future intention of miniaturizing the elements to create highly absorptive meta-materials. This objective was accomplished first through the development and analysis of a mathematical model of the buckled beam system. A characterization of the Nylon 11 material was performed to obtain the material properties for the parts that were created using SLS. Applying the mathematical model and material properties, a tuned meso-scale negative stiffness structure was fabricated. Transmissibility tests of the meso-scale structure revealed that the constrained negative stiffness system was able to achieve overall higher damping and vibration isolation than an unconstrained system. Quasistatic behavior of the system indicated that these elements would be ideal for implementation within meta-materials. Based on the results of the meso-scale system, a method to test a representative volume element for a negative stiffness meta-material was developed for future completion. / text
49

Optique astronomique et plasticité : développements en fabrication optique pour des miroirs actifs de formes libres / Astronomical optics and plasticity : developments in optical fabrication dedicated to freeform active mirrors.

Challita, Zalpha 05 December 2013 (has links)
La prochaine décennie instrumentale en astronomie se veut extrême. Elle s’ouvre avec l'arrivée des ELTs (Extremely Large Telescopes). Leur miroir primaire géant permettra d'augmenter considérablement la quantité de flux collectée et d'améliorer la résolution angulaire, paramètres clés pour l'observation et l'imagerie de sources astrophysiques. Des conséquences directes sont l'augmentation de la complexité, de l'envergure et de la masse des instruments placés aux foyers de ces télescopes. Une solution passe par l'utilisation de miroirs de formes libres. Or aujourd’hui, obtenir ces formes exotiques via les méthodes traditionnelles de fabrication optique n’est pas possible et un appel à de nouvelles ruptures technologiques s'avère nécessaire. Cette thèse présente un travail de recherche et développement amont portant sur un procédé de fabrication innovant permettant de fournir des miroirs de formes libres, avec les performances optiques requises en observations visibles et infrarouges. Ce procédé est une évolution des techniques d'Optique Active et exploite la déformation plastique des matériaux métalliques. Cependant, le domaine plastique reste un domaine de comportements non-linéaires analytiquement complexes. Il est alors d'intérêt de comparer des modèles par éléments finis avec des essais réels. Ces derniers ont nécessité la mise en place de la gamme complète de fabrication des substrats et des moyens d’essais. Les premiers miroirs obtenus pourront mettre en évidence les paramètres principaux à prendre en compte ainsi que leur niveau de sensibilité, pour ensuite converger vers des modèles éléments finis fiables et une solution de fabrication optique maîtrisée. / The next instrumental decade in astronomy aims to be extreme. It opens with the arrival of ELTs (Extremely Large Telescopes). Their giant primary mirrors will increase the light collecting power and the angular resolution, key parameters for observing and imaging of celestial bodies. However, this also leads to an increase in the complexity, size and weight of their focal-plane instruments, to minimize flux lost and to correct for the aberrations introduced. A solution would be to implement freeform mirrors inside the optical systems of these instruments. Today, it is not possible to obtain these exotic mirror shapes using the current optical fabrication techniques and new technological breakthroughs in this domain are essential. This PhD thesis present research and development work, in upstream phase, of an innovative manufacturing process to supply freeform mirrors, which should meet required optical performances in Visible and Infrared wavelength astronomical observations. This method is an evolution of Active Optics techniques and based on the ability of metallic materials to plasticize. However, the plasticity of metallic materials remains a field of non-linear behaviours and analytically complex. It is important to compare modeling from finite element analysis and real tests. For these tests, the complete manufacturing steps of the metallic substrates were put in place. The first mirrors obtained will highlight the main working parameters and their sensibility levels, and then converge toward reliable finite elements models and a mastered solution of optical freeform mirrors fabrication.
50

Process Models for Laser Engineered Net Shaping

Kummailil, John 29 April 2004 (has links)
The goal of this dissertation is to develop a model relating LENSâ„¢ process parameters to deposited thickness, incorporating the effect of substrate heating. A design review was carried out, adapting the technique of functional decomposition borrowed from axiomatic design. The review revealed that coupling between the laser path and laser power caused substrate heating. The material delivery mechanism was modeled and verified using experimental data. It was used in the derivation of the average deposition model which predicted deposition based on build parameters, but did not incorporate substrate heating. The average deposition model appeared capable of predicting deposited thickness for single line, 1- layer and 2-layer builds, performing best for the 1- layer builds which were built under essentially isothermal conditions. This model was extended to incorporate the effect of substrate heating, estimated using an energy partition approach. The energy used for substrate heating was modeled as a series of timed heating events from an instantaneous point heat source along the path of the laser. The result was called the spatial deposition model, and was verified using the same set of experimental data. The model appeared capable of predicting deposited thickness for single line, 1- layer and 2- layer builds and was able to predict the characteristic temperature rise near the borders as the laser reversed direction.

Page generated in 0.0329 seconds